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What was Hilbert's programme? Describe and critically

evaluate what you take to be the most powerful objection to it
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Introduction

Hilbert's  programme  was  an  attempt  to  establish  the  foundations  of

mathematics on the surest possible footing, relying on the certitude of the most

basic mathematical objects.  These objects are the subject of  finitary arithmetic.

Hilbert hoped that any branch of mathematics could then be validated by this solid

base.  This  would  therefore  rid  mathematics  of  inconsistency  and  ensure  the

ultimate  reliability  of  the  mathematical  method.  These  extended  branches  of

mathematics would be content-less and proceed via rule driven manipulations as in

a game, judging the usefulness of each theory by its applicability to the sciences.

Unfortunately, Gödel published a result which would prove fatal for the programme

as conceived by Hilbert.

First, I will outline  Hilbert's programme and its underlying philosophy.  After

this  I  will  explain  Gödel's  Second  Incompleteness  Theorem  and  how  Hilbert's

programme fails due to this result. Then I will consider Gentzen's Theorem and

possible revisions of the idea of finitary arithmetic. I will conclude, however, that

even with such revisions Hilbert's Programme fails to provide a solid mathematical

foundation.
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Finitism

The  basis  of  Hilbert’s  Programme  is  finitary  arithmetic.  This  can  be

understood as elementary arithmetic but which avoids use of the infinite. This was

an important point for Hilbert as, though Hilbert maintained that the infinite is an

“indispensable notion” which has become very useful in mathematical thought, it

has no place in the physical reality around us; “reality is finite” (Hilbert 1925: p.

372) and as a result intuition of infinite objects is not possible. For Hilbert, finitary

mathematics is contentual - it has content and the propositions of finitary arithmetic

can be interpreted. The content of such propositions are numerals such as 'I', 'I I I I'

and 'I  I  I  I  I  I'.  These numerals  are  not  written  to  express anything about  the

physical forms of the numerals on the paper. It is best to imagine them symbolizing

abstract versions of themselves. Hence, there is a level of abstraction present,

though  it  is  one  that,  according  to  Hilbert,  is  so  natural  to  humans  that  it  is

necessary for humans to think at all. What will be important here is how we come

to knowledge of finitary arithmetic. Hilbert claimed that the attainment of finitary

knowledge happens intuitively. This is intuition in the Kantian sense. Intuition is

profoundly intertwined with perception, linked to how we attain knowledge of the

world around us. I may intuit, for instance, that my stool has three legs. There is

also pure intuition, which allows us to consider the “forms of possible empirical

intuitions” (Shapiro 2000: p. 81). We can thus intuit abstract objects that we do not

see, such as an equilateral triangle. Pure intuition also allows us a faculty of mental

construction – to the intuited equilateral triangle I may construct a line from the
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centre of one line to the angle opposite it.  In a similar way we can intuit things

about finitary objects and come to conclusions about finitary arithmetic such as 'I I'

+ 'I I I' = 'I I I I I'.

Propositions such as ‘1+4=5’ or ‘2^9=4*2^7’ are therefore finitary (where we

take 2  to  be  an abbreviation  for  ‘I  I'  etc.).  Though such  propositions  are  only

concerned with finite entities, these entities may become far too large for a human

or even computer to calculate in a reasonable amount of time. However, what is

important is that these propositions remain in the realm of finite objects and that

there is an algorithm that could theoretically check the validity of the propositions in

a finite amount of time. The truths of finitary arithmetic are thus reliable and where

“contradictions and paradoxes arise only through our carelessness” (Hilbert 1925:

p. 376). Hilbert also allowed for propositions of algebra to be considered finitary

where there was an indication of the contentual interpretation of the symbols used

i.e. where the the symbols are used to communicate numerals. This can also be

extended to propositions with quantifiers, with conditions so that we avoid speaking

of the infinite. Basically, an existential statement must assert the existence of a

number with a certain property from a finite set, i.e. the quantifier must be bounded

so that it is possible to check the proposition in a finite amount of time. 

Finitary arithmetic is thus something that is most basic to mathematics and

also something we can attain knowledge of in the most natural way possible, via

intuition. This then provides mathematics with the surest possible footing.
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Formal Mathematics

Now that we have a secure base for mathematics, how do we account for

the mathematics not contained in finitary arithmetic? This is attained by attaching

what  Hilbert  calls  ‘ideal  mathematics’.  In  contrast  to  finitary  arithmetic,  the

propositions of ideal mathematics have no content and are essentially meaningless

(unless they correspond to finitary statements e.g. a+b=b+a). For example, group

theory is an ideal branch of mathematics. When we add the symbol ‘○’ to number

theory to form group theory, we ascribe rules to which the operation ‘○’ must follow

but the propositions of group theory have no meaning in themselves. In Hilbert’s

words,  “contentual  inference is  replaced  by  manipulation  of  signs  according  to

rules” (1925, p. 381).

The Programme

The  first  step  in  Hilbert’s  programme  was  to  sufficiently  formalize  the

branches of mathematics into axiomatic theories. This involves creating a strict

formal language which allows all mathematical propositions to be represented as

formulas and then describing a proof theory which allows the mathematician to

make inferences. A formal theory is then just a collection of sentences which are

considered  true  within  the  given  theory.  In  Hilbert’s  words,  mathematics  then

becomes an “inventory of formulas” (Hilbert 1927: p. 465). Of these formulas there

are those which provide the basis on which that branch of mathematics sits upon,

the axioms, and those which can be proved by the theory, its theorems.
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Naturally, Hilbert used the logical calculus of the time, forming sentences

using ‘and’, ‘or’, ‘not’, ‘implies’ and the existential and universal quantifiers. Each

branch of mathematics would then have a different  language,  but these logical

connectives would be at their base, thus allowing for a formal proof theory. A proof

of the statement B is then a finite string:

Where A and A→B are axioms or are the last formula of an inference occurring

earlier in the proof, i.e have already been proved. In this way, ideal mathematics

can proceed via the manipulation of symbols according to definite rules. Also, such

formal proofs are themselves finite strings of symbols and so are intuitable objects.

We can intuit them in their totality and check their validity in a finite amount of time,

hence  “formal  systems  themselves  now  come  under  the  purview  of  finitary

arithmetic” (Shapiro 2000: p. 164). This is very important for Hilbert’s aims, as it

may allow us to use finitary arithmetic to prove results about ideal theories.

Requirements

We now have branches of mathematics covered by axioms and rules of

deduction. This all  seems fitting for a modern day mathematician. However, we

need to be careful about how we construct these ideal branches, as we may create
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useless  theories.  Firstly,  Hilbert  gives  special  status  to  the  axioms  of  finitary

arithmetic,  they  are  the  surest  mathematical  truths  we  can  obtain,  hence  any

theory  we  create  must  not  contradict  them.  Secondly,  Hilbert’s  most  crucial

requirement  is  that  any  formal  theory  should  be  consistent.  A  theory,  T,  is

consistent if there is no formula,  θ, such that T⊢θ  and T⊢¬θ. An inconsistent

theory  can  prove  anything,  hence  a  proof  given  in  an  inconsistent  theory  is

useless. For example, say we take an inconsistent theory, F, which we want to use

to model fluid dynamics. From F we could derive that the energy of the system is

10 joules, but we could also arrive at the result that the energy of the system is 100

joules. 

However, to accomplish the main purpose of Hilbert’s programme Hilbert

desired that the consistency of each formal theory be proved using only finitary

means. This would mean that we can be as sure as possible of the consistency of

the theory. Here lies the tip of a problem for Hilbert as consistency is an elusive

property and is not trivial to prove.

The Objection

The  most  powerful  objection  to  Hilbert’s  programme comes  via  Gödel's

Second Incompleteness Theorem (GIT2) and a suitable interpretation of ‘finitary’.

The objection is that any sufficiently powerful and consistent formal theory cannot

prove  its  own  consistency,  hence  Hilbert’s  requirement  for  consistency  is

7



untenable.  Here,  sufficiently  powerful  means  that  the  theory  can  do  basic

arithmetic.

The statement of the theorem as given by Raatikainen (2013: §3.1) is:

“Assume F is a consistent formalized system which contains elementary arithmetic.

Then F  ⊬ Cons(F).”

Here  'Cons(F)'  is  the  predicate  stating  that  F  is  consistent  and  ‘containing

elementary arithmetic’ means that F contains Robinson Arithmetic (ROB). ROB is

Peano Arithmetic – the standard theory of arithmetic – without the induction axiom.

To say that F contains ROB means that every statement provable in ROB is also

provable in F.

How exactly  does  this  affect  Hilbert's  programme? Well,  given  a  formal

theory,  T, that  contains  ROB,  we  ask  does  T  contain  finitary  arithmetic?  It  is

generally accepted, given the basic nature of finitary arithmetic as described by

Hilbert, that ROB does contain finitary arithmetic (if ROB is not sufficient, then we

can add the induction axiom and consider Peano Arithmetic but the result is much

the same). Thus, by GIT2 T cannot prove its own consistency. As T contains finitary

arithmetic anything provable by finitary arithmetic is also provable by T. Hence, if T

cannot prove that T is consistent then neither can finitary arithmetic. We are then

left  in  the  position  that  any theory  strong enough to  do  ROB does not  satisfy
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Hilbert’s  requirement  for  consistency. Thus  Hilbert’s  consistency  requirement  is

unachievable,  removing  the  possibility  of  placing  mathematics  on  the  sure

foundations of finitary arithmetic.

This  isn't  the  end  of  the  discussion  however.  GIT2  relies  on  a  specific

sentence  for  expressing  consistency.  It  may  be  true  that  F  cannot  prove  this

specific sentence, but are there other sentences expressing consistency that F can

prove? This would mean that F can in fact prove its own consistency and leave the

possibility that finitary arithmetic can also prove the consistency of F. Also, it may

be the  case that  finitary arithmetic  isn't  contained in  ROB and that  there  exist

finitary means at our disposal that go beyond basic arithmetic, this would dodge

Gödel's trap as though a theory F may not be able to prove its own consistency

there would still be the possibility that finitary arithmetic can.

In order to address these questions I will describe Gödel's results in more

detail. It will also be instructive to understand better why containing arithmetic is a

necessary condition. In order to consider  'F  Cons(F)', we must be able to write⊢

'Cons(F)'  as  a  sentence  in  the  language  of  F.  Gödel  devised  an  ingenious

technique  called  Gödel  numbering  which  is  an  algorithm  for  assigning  natural

numbers, in a unique way, to formulas in the language of F. As proofs in a formal

system are just  finite strings of formulas it  is  then possible to assign a natural

number, again uniquely, to every proof in F. We can then assert the existence of a

formula in the language of F which defines a predicate expressing that a natural
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number x is associated to the proof of a sentence θ. With existential quantification

this  gives  us  the  provability  predicate ∃xPr ( x ,[θ]) .  Where  [θ]  is  the  Gödel

number of the sentence θ. This predicate states that there exists a proof of θ in F.

We can  now formalize  'Cons(F)'  as ¬∃ xPr (x , [θ ]) where  we  take  θ  to  be  an

inherently contradictory sentence. To speak of [θ] F must contain some amount of

number theory, also for example, Gödel numberings use ideas of primality, and it

turns out that Robinson Arithmetic is sufficiently strong to do this. 

Does it matter how consistency is formalized?

Above I  described that consistency is formalized as the sentence stating

that there is no proof of a given contradiction. However, an explicit construction for

the  formula  defining  the  provability  relation  is  not  given.  This  poses  potential

problems for  Gödel's  Theorem.  In  fact,  given a formula defining the provability

relation we can construct new formulas that also define the provability relation but

render  the  theorem  false  or  even  trivially  true.  However,  as  described  by

Raatikainen (2013: §3.2), it is possible to stipulate conditions on the formalization

of  the  provability  predicate  such  that  GIT2  holds  in  the  desired  way.  These

conditions also ensure that the provability predicate behaves like the natural notion

of provability we would expect so I will instead consider the second point.
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Can all finitary means be formalized in ROB?

If finitary means are not confined to basic arithmetic then we may be able to

use a theory that is considered finitary and is also able to prove the consistency of

theories such as Peano arithmetic (PA). This may allow Hilbert’s Programme to

survive  the  above  objection.  For  a  well-established  example,  I  will  look  at

Gentzen’s Theorem.  Gentzen (1936)  proved the  consistency of  PA from within

Primitive Recursive Arithmetic (PRA) with the addition of transfinite induction1 up to

ε0
2. PRA is the logical foundation of arithmetic as given by Skolem (1923) which is

similar to PA (and hence ROB), however it does not allow unbounded quantifiers.

Though  Takeuti  (1987:  p.  90)  claims  that  Hilbert's  finitary  arithmetic  could  be

considered as “that which can be formalized in primitive recursive arithmetic”, he

does give a compelling account of how Gentzen's proof using transfinite induction

may be considered as finitary.

1 This is best understood as normal mathematical induction which allows 'jumps' 

up to larger ordinals

2 ε0  is a particular countably infinite ordinal 
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Here is a brief outline of the idea of the proof as described by Takeuti:

• Each proof in PA can be associated to an ordinal less than ε0

• ε0 is  shown  to  be  accessible3,  and  so  any  ordinal  less  than  ε0 is  also

accessible

• It is shown that for any contradiction in PA the ordinal associated to its proof

is not accessible

• Hence no contradictions are provable in PA

• Hence PA is consistent

It is argued that such a proof then relies only on “concrete sequences of

concrete figures, concrete operations on them, concrete operations on concrete

operations, and so on” (Takeuti 1985: p. 257).

How can  the  objects  and  operations  involved  be  considered  'concrete'?

Well,  we  may  consider  how  arbitrarily  large  sequences  of  numerals  can  be

considered  concrete  though  they  are  not  written  on  paper.  We  begin  with  a

concrete figure 'I'.  Then we take concrete operations that explain how to create

new expressions, in this case: if 'a' is a numeral then so is 'a I'. We then say that

3 An ordinal is accessible if any strictly decreasing sequence beginning with the 

ordinal is finite
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this defines numerals, i.e. anything obtained from this procedure is a numeral and

all numerals can be obtained via this procedure.

In a similar way we can have an inductive definition of ordinals, as given by

Takeuti (1987: p. 90):

“ O1 0 is an ordinal.

  O2 Let μ and μ1, … ,μn be ordinals. Then μ1 + μ2  + … + μn and  ωμ are

ordinals.”

This definition then captures all ordinals less than ε0 and may be used to claim that

any such ordinal defined in this way is a concrete object.

The only controversial part of Gentzen's proof of the consistency of PA then

boils down to the legitimacy of concrete manipulations of concrete objects. These

objects express notions of actual infinite entities and so could not be admitted in a

finitary proof in the strict sense. However, it appears possible to extend the notion

to allow for such concrete operations and that such a revised notion would still be a

faculty of intuition. After all, the level of abstraction required for such definitions and

arguments appears to be very similar to that required to do calculations on large

natural numbers. Moreover, Tait describes that a function, f, from A to B could be

understood from a finitary point of view as “a specific procedure for defining [an

element  of]  B  from  an  arbitrary  [element  of]  A”  (Tait  1981:  p.  528).  This  is

analogous  to  giving  a  concrete  operation  which  defines  how to  construct  new
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ordinals from ones already given. Hence, concrete operations and objects could be

considered finitary.

With this revised version of finitism could Hilbert's programme then proceed

as desired? Could we prove, say, the consistency of ZFC? Such a proof has not

been given and would certainly require induction up to an ordinal larger than ε0.

Also, a crucial element was that finitary arithmetic is as sure a grounding as is

possible for mathematics and that any inferences made using finitary arithmetic are

as certain as humanly possible. Though it may be possible to consider arguments

using transfinite induction as in some way concrete, the epistemic strength of these

arguments is not the same as that  conceived by Hilbert  as they are no longer

contentual.  This  is  an  important  metaphysical  point.  Above,  I  gave  inductive

definitions  of  numerals  and  ordinals.  However,  such  definitions  are  only

constructive  and  not  actually  definitional  of  the  objects.  Hence,  the  arguments

involving them are not based on “contentual inference”.

Further, it  may even be the  case that  primitive  recursive  arithmetic  with

transfinite induction up to  ε0 is inconsistent. Hence, we cannot be certain that a

revised version of finitary arithmetic allowing for transfinite induction immunizes

Hilbert's Programme from Gödel's Theorem.
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Conclusion

Within standard proof systems and with a strict understanding of finitary, I

have  shown  that  Gödel's  Second  Incompleteness  Theorem  proves  that  the

consistency  of  useful  mathematical  theories  is  unable  to  be  proven  by  finitary

means  alone.  This  leaves  Hilbert's  conception  of  mathematics  without  a

foundation. Without being able to verify the consistency of a theory using methods

that appear  infallible  an element of  doubt  is  cast  over the worth of  any formal

theory. Even if we extend our definition of finitary to include Gentzen's methods of

transfinite induction we are still left with open questions regarding the consistency

of strong mathematical theories. 

Formal  mathematics  has  however  proceeded  somewhat  regardless  and

Hilbert's  ideas  live  on.  Formal  theories  such  as  ZFC  are  used  and  they  are

generally assumed to be consistent as no contradictions have yet been found. It

would be ideal to find a consistency proof of ZFC, though this would likely be in a

system stronger than ZFC thus denying the epistemic certainty desired by Hilbert.

It appears then that there is no absolutely sure way of proving the consistency of

formal mathematical theories, leaving us in the disconcerting position of having to

just put faith into the consistency of any theories we use.
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