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Abstract
An introduction to o-minimality (sometimes referred to as order-minimality) is provided in this
paper. An o-minimal structure is a model-theoretic structure containing a dense linear order
where the subsets (of the universe of the structure) definable with parameters are finite unions
of intervals and points. The paper begins with the definition of an o-minimal structure, giving two
key theorems and then developing to look at further properties of specific o-minimal structures.
The two key theorems are the monotonicity theorem, due to Pillay and Steinhorn [1], and cell
decomposition, due to Knight, Pillay and Steinhorn [2]. The paper is largely based on the principal
text on o-minimality, Lou van den Dries’ ‘Tame Topology and O-minimal Structures’ [3]. The
basic ideas of o-minimality are introduced in chapter one, where the set-theoretic and model
theoretic definitions are given and the equivalence between them is proved. The model-theoretic
definition of definable gives a powerful tool for deciding which sets belong to a given structure.
The model theoretic notions should be easily comprehensible to anyone familiar with the basics
of model theory and a grasp of first-order logic, also model theory features heavily in chapter
four so some familiarity with model theory and first-order logic is recommended. The second
chapter is devoted to monotonicity and cell decomposition. The monotonicity theorem states that
any function definable in an o-minimal structure can be split into finitely many subintervals on
which the function is ‘well-behaved’. The cell decomposition states that given any finite set of
definable sets, there is a partition of the ambient space into cells which also partitions the given
sets. These two theorems may not at first seem particularly strong or surprising, however the
following chapters will to some extent highlight how useful they are. The third chapter begins
to look more closely at the topology of the ambient space induced by the ordering and considers
properties of a restricted class of o-minimal structures - expansions of ordered abelian groups.
The level of topology required to understand this is very low and an aside is provided which
should be sufficient. Chapter three also works inside some group theoretic structure, though the
material can be understood without any knowledge of group theory. The main result of chapter
three being definable curve selection, due to van den Dries, which shows that a point in the
closure of a definable set is a limit point of some path in the set. Chapter four considers the
exponential function in o-minimal structures, firstly considering the exponential function on the
real line and then defining the exponential function on an arbitrary dense linearly ordered set.
The main theorem of this chapter is the growth dichotomy, due to Miller [4], which states that
for every o-minimal structure that contains an ordered field either every definable function is
bounded by a power function or the exponential function is definable. Chapter four involves
group homomorphisms but these can be easily understood by any model theorist as structure
preserving maps. However, some familiarity with fields is certainly necessary throughout this
chapter. Finally, some applications of o-minimality are briefly discussed in chapter five. This
paper is mainly concerned with properties of arbitrary o-minimal structures, however a large
area of research into o-minimality is devoted to finding out which structures are o-minimal. The
beauty of this subject is that the o-minimality condition is an excellent restriction. O-minimal
structures have some very nice properties, yet the class of o-minimal structures is still very
large. Hence there are many useful and well researched structures which are o-minimal, for
example the semialgebraic sets - used extensively in algebraic geometry - and, as deduced from
a result due to Wilkie [5], the real ordered field with exponentiation. Also, the real ordered
field with restricted analytic functions [6] and the real ordered field with exponentiation and
restricted analytic functions [7] are o-minimal. The paper is thus aimed at mathematicians who
are familiar with model theory and first-order logic and would like to gain some familiarity with
o-minimality from a purely model-theoretic perspective or to apply o-minimality to other areas of
maths, due to the nature of o-minimality this may include students interested in topology, group
theory, combinatorics, algebra or analysis.
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1. Introduction to o-Minimal
Structures

1.1. Introduction

In this chapter we build up the necessary framework to look at the ideas fundamental to the
concept of o-minimality. This begins with a look at what is meant by a structure on a given
set. We see that structures have some nice properties and that this notion of structures is
closely linked with the notion of definability from model theory. We then define the
condition for a structure on a set to be o-minimal and and for a model-theoretic structure
to be o-minimal. We then briefly describe some properties of o-minimal structures as well
as some important examples of o-minimal structures.

1.2. Structures

We look at a structure as a set-theoretic object, more specifically a structure is a nonempty
collection of sets that is closed under certain operations. At first the given definition of
a structure may seem somewhat arbitrary and not be immediately clear why such objects
are important. However, as I will show, the way that such structures are defined means
that we can deduce if a set is contained in the structure if there is an appropriate first-order
defining it (in a model-theoretic sense).

Before introducing the definition of a structure it will be necessary to define what is meant
by a boolean algebra of subsets of a given set X .

Definition 1.2.1. [3, p. 12] A boolean algebra of subsets of a set X is a non-empty
collection C of subsets of X such that if A,B ∈ C then A ∪B ∈ C & X − A ∈ C

1



Chapter 1. Introduction to o-Minimal Structures

Van den Dries notes that for a boolean algebra of subsets of X , C, X ∈ C, ∅ ∈ C and if
A,B ∈ C then A ∩B ∈ C [3, p. 12].

To see why this is the case, note that X = (X − A) ∪ A ∈ C for some set A ⊆ X (Such
an A exists as C is nonempty). Further, X − X = ∅ ∈ C. Also, to see that A ∩ B ∈ C
note that A ∩B = X − ((X − A) ∪ (X −B)).

Example 1.2.2. To see a trivial example: C = {∅,N, {x ∈ N : x is even }, {x ∈ N : x is odd }}
is a boolean algebra of subsets of N.

Definition 1.2.3. [3, p. 13] A structure on a nonempty set R is a sequence S = (Sm)m∈N

such that for each m ≥ 0:

(S1) Sm is a boolean algebra of subsets of Rm

(S2) if A ∈ Sm, then R× A & A×R belong to Sm+1

(S3) {(x1, ..., xm) ∈ Rm : x1 = xm} ∈ Sm

(S4) if A ∈ Sm+1 then π(A) ∈ Sm where π : Rm+1 → Rm is the projection map on the
first m co-ordinates

Note Instead of saying that S is a structure onRwe may also say that (R,S) is a structure.
Also, we say that a set A belongs to S if it belongs to Sm for some m.

The definition of a structure in fact ensures that any set A belongs to S if it is definable
from the sets of S. Van den Dries does not make explicitly clear why this is the case.
For some intuition behind the conditions, in some sense we can think of X − A, A ∪ B
and A ∩ B from (S1) as providing closure under negation, conjunction, and disjunction
respectively and (S4) providing closure under existential quantification. In Lemma 1.3.7
we will see more clearly that if we are given some sets R &Bi, i ∈ I with S being the
smallest structure onR containing theBi, then a setA is definable from theBi if and only
if A belongs to S. In particular, if a structure S on R is given then consider the smallest
structure containing all the sets of S. This must be S as it is already a structure. Then, by
applying Lemma 1.3.7 we will see that a set A is definable from the sets in S if and only
if A belongs to S. For this reason, when S is given, we call A definable if A belongs to
S.

It will be necessary to have some way of speaking about functions in relation to structures,
in this way we will be able to classify functions. We do this by saying that a function

2



Chapter 1. Introduction to o-Minimal Structures

belongs to a structure if its graph does. See the definition of the graph of a function
below.

Definition 1.2.4. [3, p. ix] Let f : X → Y be a function. The graph of f , Γ(f), is defined
to be the set

{(x, y) : x ∈ X & y = f(x)} ⊆ X × Y

.

Terminology We say that f belongs to S if its graph, Γ(f), belongs to S.

1.2.1. Basic Properties of Structures

The following lemma gives some basic properties of structures that will be useful later on.
These properties show how structures can be considered closed under certain operations.

Lemma 1.2.5. [3, p. 13] Let S be a structure on R.

(i) If A ∈ Sm and B ∈ Sn, then A×B ∈ Sm+n

(ii) For 1 ≤ i < j ≤ m the set ∆ij := {(x1, ..., xm) ∈ Rm : xi = xj} belongs to S

(iii) Let B ∈ Sn, and let i(1), ..., i(n) ∈ {1, ...,m}. Then the set A ⊆ Rm defined by the
condition

(x1, ..., xm) ∈ A ⇐⇒ (xi(1), ..., xi(n)) ∈ B

belongs to S.

Proof. (i) Omitted. This can easily be seen from (S1) and (S2) so I will omit this proof.

(ii) Due to Van den Dries [3, p. 14]. Let i, j ∈ N with 1 ≤ i < j ≤ m.
Then A = {(x1, ..., xj−i) ∈ Rj−i : x1 = xj−i} belongs to S by (S3). Then
∆ij = Ri−1 × A×Rm−j−1 belongs to S by (i).

(iii) Let B ∈ Sn. Then Rm ×B ∈ Sm+n by (i). Now,

∆i(1)1+m ∩Rm ×B = {(x1, ..., xm, y1, ..., yn ∈ Rm ×B : xi(1) = y1}

3



Chapter 1. Introduction to o-Minimal Structures

belongs to S by (ii) and (S1), where ∆i(1)1+m ⊆ Rm+n. Repeating this process n-1
times for ∆i(2)2+m,∆i(3)3+m... we obtain the set

C = {(x1, ..., xm, y1, ..., yn) ∈ Rm ×B : xi(1) = y1, ..., xi(n) = yn}

which again belongs to S by (ii) and (S1). We can apply the projection map to C to
get

{(x1, ..., xm, y1, ..., yn−1) ∈ Rm+n−1 : xi(1) = y1, ..., xi(n−1) = yn−1

& xi(n) = yn for some yn such that (y1, ..., yn) ∈ B}

which belongs to S by (S4).

Applying the projection map n− 1 more times we obtain the set

{(x1, ..., xm) ∈ Rm : xi(1) = y1, ..., xi(n) = yn

for some y1, ..., yn such that (y1, ..., yn) ∈ B}

which belongs to S by (S4). This is the required set, A.

1.3. Definability

In this section we formalize how to deduce membership of a structure using the idea of
definability from model theory. This makes the process much simpler, removing the need
to directly prove membership from (S1-4).

The definition given below briefly formalizes the notion of a model-theoretic structure. A
language L is a collection of relation, function and constant symbols and an L-structure
gives a semantic meaning to the symbols in L, interpreting the symbols as relation,
functions and constants within the structure.

Definition 1.3.1. Fix a language, L, with relation symbols, Ti, function symbols fj and
constant symbols ck, indexed by sets I, J,K respectively; an model-theoretic structure is
a tuple

M = 〈M,Ti(M), fj(M), ck(M)〉

4



Chapter 1. Introduction to o-Minimal Structures

Where Ti(M), fj(M), ck(M) denote the interpretations of the relations, function and
constant symbols in M. We say that M is an L-structure and call M the universe of
M.

Given a subset C ⊆ M we denote the language obtained by extending it with constant
symbols from C by LC and we denote the LC-structure obtained by adding constants
from C byMC .

Also, it should be noted that we always have a symbol for equality and the interpretation
of this symbol is the ‘usual’ notion of equality.

Example 1.3.2. Z = 〈Z,+,−〉 is a model in the language with one binary and one unary
function symbol.

Let C = {0, 1, 2}. Then ZC = 〈Z,+,−, 0, 1, 2〉.

The idea of definable set of a model is that there is a formula which defines it i.e. there is
a formula which is satisfied in the model by all elements of the set and only satisfied by
elements of this set. This is made more formal below.

Definition 1.3.3. LetM be an L-structure as above and B ⊆ M . We say that X ⊆ Mn

is definable over B inM if there is an L-formula

ϕ(x1, ..., xn, y1, ..., yk) & b1, ..., bk ∈ B

such that for any a1, ..., an ∈M :

M |= ϕ(a1, ..., an, b1, ..., bk) ⇐⇒ (a1, ..., an) ∈ X

In particular, we say that X ⊆ Mn is definable inM if X is definable as above but with
B = ∅. If B = M we say that X is definable using constants.

Example 1.3.4. (1) Let R = 〈N − {0},×〉 where × is the usual interpretation of
multiplication on the natural numbers. Then the formula ϕ(x) : −∃y : 2 × y = x

defines the set of even natural numbers greater than zero in R.

(2) LetR = 〈R, <〉where< is the usual interpration of the ordering of the real numbers.
Then the only definable subsets of R in R are ∅ and R.

5



Chapter 1. Introduction to o-Minimal Structures

The subsets of R definable in R over {1} are {x ∈ R : x < 1}, {x ∈ R : 1 < x}
and {1}.

Definition 1.3.5. [3, p. 22] Given a model-theoretic structure R = 〈R, Ti, fj, ck〉, we let
Def(R) be the smallest set-theoretic structure on the set R that contains each relation Ti,
function fj and constant ck.

Example 1.3.6. Let R = 〈Z, <,2 , 0, 1〉. Then {(x, y) ∈ Z2 : x < y} (from <),
{(x, x2) ∈ Z2 : x ∈ Z} (from 2), {0}, {1} and {(x, x) ∈ Z2 : x ∈ Z} (from =) are
all contained in Def(R). Also, all sets of the form {(x1, ..., xm) ∈ Zm : x1 = xm} are in
Def(R).

Moreover, all the above sets and combinations of the above sets due to operations from
(S1),(S2) and (S4) are in Def(R) and these are the only sets in Def(R).

Lemma 1.3.7. Given a language, L, let R = 〈R, Ti, fj, ck〉 be an L-structure. Then for
any n ∈ N and any subset A ⊆ Rn

A ∈ Def(R) ⇐⇒ A is definable inR

Proof. Let Def(R) = S = (Sm)m∈N

I will first consider the forward, ⇒, direction. Let A ⊆ Rn and A ∈ Def(R).
As Def(R) is the smallest structure on R containing the relations, functions and
constants then any set belonging to Def(R) must either be one of Ti, Γ(fj), {ck} or
{(x1, ..., xn) ∈ Rn : x1 = xn} or a finite combination of such sets from the operations
induced by (S1), (S2) and (S4). Hence we can prove by induction on the ‘complexity’ of
the set A.

Base Cases Clearly if A = Ti,Γ(fj), or {ck} for some i ∈ I, j ∈ J or k ∈ K then A is
definable inR.

SupposeA = {(x1, ..., xn) ∈ Rn : x1 = xn} for some n ≥ 1, then ϕ(x1, ..., xn) : x1 = xn

defines A inR.

Induction Hypothesis Let B,C ∈ Def(R) be definable and defined by the formulas
ϕ(x1, ..., xm) and θ(x1, ..., xk) respectively.

Split into cases according to the operations from (S1),(S2) and (S4). i.e. A = B ∪ C,
A = Rn −B (from S1), A = R×B, A = B ×R (from S2) or A = π(B) (from S4).

Must show that in either case that A is definable.

6



Chapter 1. Introduction to o-Minimal Structures

(S1) Let n = m = k. If A = B ∪ C then A is defined by the formula

ψ(x1, ..., xn) := ϕ(x1, ..., xn) ∨ θ(x1, ..., xn)

& if A = Rn−B then A is defined by the formula ψ(x1, ..., xn) := ¬ϕ(x1, ..., xn).

(S2) Suppose n = m+ 1. If A = R×B then A is defined by the formula

ψ(x1, ..., xn) := ϕ(x2, ..., xn)

& if A = B ×R then A is defined by the formula ψ(x1, ..., xn) := ϕ(x1, ..., xn−1).

(S4) Suppose n = m − 1. If A = π(B). Then A is defined by the formula
ψ(x1, ..., xn) := ∃y : ϕ(x1, ..., xn, y).

This concludes the forward direction.

For the reverse direction, ⇐, let A be defined by ψ(x1, ..., xn). Will prove by induction
on complexity of the formula.

Base Case Suppose ψ(x1, ..., xn) is atomic. Let i(1), ..., i(k) ∈ {1, ..., n}.

For simplicity I will suppose the language is relational i.e. ignore function and constant
symbols.

Then
ψ(x1, ..., xn) := Tb(xi(1), ..., xi(k))

for some b ∈ I .

Now, for a1, ..., an ∈ R

(a1, ..., an) ∈ A ⇐⇒ (ai(1), ..., ai(k)) ∈ Tb

Thus, since Tb belongs to Def(R), A also belongs to Def(R) by Lemma 1.2.5(iii).

Induction Hypothesis Let θ(x1, ..., xm) and ϕ(x1, ..., xk) define sets which belong to
Def(R). Call these sets Aθ and Aϕ.

Let i1, ..., im+k ∈ {1, ..., n}. It must be shown that if ψ(x1, ..., xn) is a boolean
combination of θ(xi(1), ..., xi(m)) and ϕ(xi(m+1), ..., xi(m+k)) then A belongs to Def(R).

Suppose ψ(x1, ..., xn) := θ(xi(1), ..., xi(m)) ∧ ϕ(xi(m+1), ..., xi(m+k)). Let a1, ..., an ∈ R.

7



Chapter 1. Introduction to o-Minimal Structures

Then

(a1, ..., an) ∈ A ⇐⇒ R |= ψ(x1, ..., xn)

⇐⇒ R |= θ(ai(1), ..., ai(m)) ∧ ϕ(ai(m+1), ..., ai(m+k))

⇐⇒ (ai(1), ..., ai(m)) ∈ Aθ and (ai(m+1), ..., ai(m+k)) ∈ Aϕ. (*)

Now, if m = k let A′ϕ be the set defined by

(xi(1), ..., xi(m)) ∈ A′ϕ ⇐⇒ (xi(m+1), ..., xi(m+k)) ∈ Aϕ.

Then A′ϕ belongs to Def(R) by Lemma 1.2.5(iii).

Hence by (*) (a1, ..., an) ∈ A ⇐⇒ (ai(1), ..., ai(m)) ∈ Aθ ∩ A′ϕ. (Note that Aθ ∩ A′ϕ
belongs to Def(R) by (S1)).

Hence A belongs to Def(R) by Lemma 1.2.5(iii).

If m 6= k, suppose without loss of generality that m < k. Let t = k −m.

The set B = Aθ ×R× ...×R ⊆ Rm+t belongs to Def(R) by (S2).

Then (a1, ..., an) ∈ A ⇐⇒ (ai(1), ..., ai(k)) ∈ B and (ai(m), ..., ai(m+k)) ∈ Aϕ. Now we
can repeat a similar argument as for the case where m = k to see that again A belongs to
Def(R).

This concludes the proof for the case

ψ(x1, ..., xn) := θ(xi(1), ..., xi(m)) ∧ ϕ(xi(m+1), ..., xi(m+k)).

For brevity I will leave the cases for ∨, ¬,→ and existential and universal quantification,
though the idea of the proof of these is much the same.

Now, due to the above lemma, if we are concerned with finding out if a given setA belongs
to a given structure S we only need to find a formula defining it in the appropriate model.
To do this, consider Def(R) where R is the model-theoretic structure 〈R, Ti〉 and every
set belonging to S is equal to some Ti. This is clearly just equal to S itself so by the above

8



Chapter 1. Introduction to o-Minimal Structures

lemma, A belongs to S if and only if A is definable in the modelR. An example is given
below:

Example 1.3.8. [3, p. 14] Let S ⊆ Rm, B ∈ Sn and f : S → Rn be a function that
belongs to S. Then f−1(B) ∈ Sm.
Solution Van den Dries just gives the expression:

x ∈ f−1(B) ⇐⇒ ∃y(y ∈ B & (x, y) ∈ Γ(f))

as a solution.
Explanation If we take the structure R = 〈R, Ti〉 where every set belonging to S is
equal to some Ti. Then, as we are given that B belongs to S and the graph of f
belongs to S, we know that they are definable in R by Lemma 1.3.7. Thus they can
be expressed as formulas θ(x1, ..., xn) & ψ(x1, ..., xm+n), respectively. Now the formula
∃y1...∃yn(θ(y1, .., yn) ∧ ψ(x1, .., xm, y1, ..., yn)) defines f−1(B) in R. Hence f−1(B)

belongs to S by the Lemma 1.3.7.

From this point it will just be standard to use the two notions of ‘definable’
interchangeably, saying that a set A is definable to mean that A belongs to the given
S.

Now that we have Lemma 1.3.7 and a better understanding of deciding whether a given
set belongs to a structure I will develop on the properties of structures.

The following are exercises taken from [3, p. 15 & p. 23].

Proposition 1.3.9. (1) Let S contain binary operations + : R2 → R and · : R2 → R

with respect to which R is a ring. Then S contains {0} and {1} and that if S
contains A ⊆ Rm and the functions f, g : A → R, then it contains −f and f · g
from A to R.

(2) Let S contain the order relation {(x, y) ∈ R2 : x < y} and give the sets in S the
topology such that the intervals form a base inR and cartesian products of intervals
form a base in Rm (see Remark 2.1.1 for more information on the topology), then
the topological closure cl(A) of a definable set A ⊆ Rm belongs to S.

(3) Let R = R and S contain addition and multiplication, then S contains the order
relation and each singleton {q} such that q is a rational number.

9
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(4)Let R = R and S contain addition, multiplication, ordering, 0 and 1 with respect
to an ordered field, then each function f : Rm → R defined by a polynomial
f(X1, ..., Xm) ∈ R[X1, ..., Xm] belongs to S .

Proof. (1) We can see that 0 is defined by x = 0 ⇐⇒ for all y ∈ R, x+ y = y.
Similarly 1 is defined by x = 1 ⇐⇒ for all y ∈ R x · y = y. −f is defined by
(x, y) ∈ Γ(−f) ⇐⇒ (x,−y) ∈ Γ(f) (note that we are supposing that ‘−’ is
definable but this is clearly the case). f · g is defined by (x, y) ∈ Γ(f · g)⇐⇒
there exists z, z′ ∈ Γ(f) such that f(x) = z & g(x) = z′ &z · z′ = y.

(2) (x1, .., xm) ∈ cl(A) ⇐⇒ for all a1, ..., am, b1, ..., bm ∈ R if
a1 < x1 < b1, ..., am < xm < bm then there is (c1, ..., cm) ∈ A such that
a1 < c1 < b1, ..., am < cm < bm.

(3) First see that we can define the set of positive elements of R by r is positive ⇐⇒
there exists some k ∈ R such that k · k = r. We then define the order relation:
x < y ⇐⇒ for some positive r, x+ r = y. Let q = a/b be some rational number.
Then due to (1), 1 is definable and so then are a and b for example by x = a ⇐⇒
x = 1 + ...+ 1 (a times). Then, x = q ⇐⇒ b · x = a.

(4) Let f(X1, ..., Xm) =
∑d

i=0 aiX
δ1(i)
1 · ... · Xδm(i)

m for some d ∈ N, δj(i) ∈ N and
ai ∈ Z. Again, S contains 1 and addition so it also contains all the integers. Then
f(x1, ..., xm) = y ⇐⇒ y = a0x

δ1(0)
1 · ... ·xδm(0)

m + ...+adx
δ1(d)
1 · ... ·xδm(d)

m defines f .
This actually shows that each semialgebraic set in Rm belongs to S. I will discuss
these later. (They are defined in 1.4.7).

1.4. o-Minimal Structures

We have seen already that structures have some useful properties, however we can add
the conditions of o-minimality which restrict us to working with a smaller class of objects
but turn out to give some very nice properties. Importantly, there are some well-studied
and often-used structures which are contained in the class of o-minimal structures. Now
that we have an understanding of structures we can look at what it means for a given

10



Chapter 1. Introduction to o-Minimal Structures

structure to be o-minimal, the core property of this investigation. First, however, it will
be necessary to define some terms.

Definition 1.4.1. [3, p. 17] Given a set R that is linearly ordered by < (we say that
(R,<) is a linearly ordered set) we say that R is dense if for all a, b ∈ R with a < b there
is c ∈ R with a < c < b. We say that (R,<) is a dense linearly ordered set.

From now on we will let (R,<) be a dense linearly ordered nonempty set without
endpoints.

Remark 1.4.2. [3, p. 17] Given (R,<), R does not itself contain endpoints but we write
+∞, −∞ to denote endpoints such that for all r ∈ R −∞ < r < +∞. Also, we write
R∞ to denote the set R ∪ {−∞,+∞}.

Definition 1.4.3. [3, p. 17] An interval is a nonempty set (a, b) := {x ∈ R : a < x < b}
with −∞ ≤ a < b ≤ +∞.

Definition 1.4.4. [3, p. 17] Let (R,<) be a dense linearly ordered non empty set without
endpoints. An o-minimal structure on (R,<) is by definition a structure S onR such that

(O1) {(x, y) ∈ R2 : x < y} ∈ S2;

(O2) the sets in S1 are exactly the finite unions of intervals and points.

We say that (R,<,S) is an o-minimal structure.

In essence, O1 tells us that the order relation is definable and O2 that all the finite unions
of intervals and points are definable and that these are the only definable subsets of R,
note that these are exactly the subsets of R definable using only the order relation and
constants.

From now on we will assume that (R,<,S) is an o-minimal structure.

Van den Dries now gives the following lemma, showing simple properties that will be
useful later which follow from o-minimality. Van den Dries does not provide a proof so I
will provide a quick proof.

Lemma 1.4.5. [3, p. 18] Let A ⊆ R be definable. We let inf(A) and sup(A) denote the
usual infinum and supremum of A ⊆ R. Then:

(i) inf(A) and sup(A) exist in R∞,

11
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(ii) the boundary,

bd(A) := {x ∈ R : each interval containing x intersects both A and R− A},

is finite, and if a1 < ... < ak are the points of bd(A) in order, then each interval
(ai, ai−1), where a0 = −∞ and ak+1 = +∞, is either part of A or disjoint from A.

Proof. (i) As A is definable then from the definition of o-minimality, A is a finite union
of intervals and points, A =

⋃
i∈I Bi. I is a finite indexing set, so there is some

Bi containing a point r ∈ R that is greater than or equal to any point in any of the
other sets Bj . If Bi is a singleton set then r =sup(A). If Bi = (a, b) for some
a, b ∈ R, then b =sup(A). This concludes the proof for sup(A). The proof for
inf(A) is similar.

(ii) Let A =
⋃
i∈I Bi, where the Bi are intervals or points in R and I is a finite indexing

set (this comes from o-minimality). We can also assume that each Bi is disjoint.
Then for each j, Bj is a singleton set or an interval. For each Bj that is a singleton
set, we get (at most) one point in the boundary ofA& for eachBj that is an interval
we get (at most) two points in the boundary of A and these are the only boundary
points. As I is finite, so must be bd(A).

For the second part, note that if (ai, ai+1) is not a subset of A and is not disjoint
from A then there must be a boundary point of A in between ai and ai+1 which is a
contradiction.

So far we have described a set-theoretic definition of o-minimality. How does this transfer
to a model-theoretic notion?

Definition 1.4.6. [3, p. 23] A model-theoretic structure R = (R,<, ...), where < is
a dense linear order without endpoints on R, is called o-minimal if Def(RR) is an o-
minimal structure on (R,<), in other words, every set S ⊆ R that is definable inR using
constants is a union of finitely many intervals and points.

There is an important distinction that should be noted. In speaking of an o-minimal
structure on (R,<), we mean in the sense of Definition 1.4.4. However, we will denote
o-minimal structures in the model-theoretic sense by 〈R,<, ...〉; in particular we may look

12
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at the model-theoretic structure 〈R,<〉 and this should not be confused with the notion of
an o-minimal structure on (R,<), this should be clear from the context.

1.4.1. Examples of o-Minimal Structures

Example 1.4.7. (1) The model-theoretic structure 〈R,<〉 is o-minimal where (R,<) is
a dense linearly ordered set without endpoints [3, p. 24]. It is intuitively very clear
why this is the case, using < and parameters to define subsets of R we can only
define unions of finitely many intervals and points.

(2) The semialgebraic sets on (R, <) [3, p. 37]. The semi-algebraic sets on (R, <) are
defined as follows: Let k, l, n ∈ N and f1, ..., fk, g1, ..., gl ∈ R[X1, ..., Xn]. Define
a set, X := {x ∈ Rn : f1(x) = ... = fk(x) = 0, g1(x) > 0, ..., gl(x) > 0}. A
semialgebraic set is then a finite union of sets defined by polynomials in this way
[3, p. 1]. Semialgebraic sets will be discussed further in Chapter 5.

(3) The ordered field of real numbers,R = 〈R, <, 0, 1,+, ·〉. This actually follows from
the fact that the sets definable in R using constants are exactly the semialgebraic
sets on (R, <) [3, p. 37].

(4) The exponential field of real numbers, R = 〈R, <, 0, 1,+, ·, exp〉 - this will be
discussed later in Chapter 4.

(5) The exponential field of real numbers with restricted analytic functions is also o-
minimal. This was proven in [7]. Given an analytic function in many variables,
f : Rm → R, which converges in [−1, 1]m. Then f̄ : Rm → R defined by

f̄(x) =

f(x) for x ∈ [−1, 1]m

0 for x /∈ [−1, 1]m

is a restricted analytic function.
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2. Monotonicity and Cell
Decomposition

2.1. Introduction

Now that we have looked at the basic notions of o-minimality we can move onto two of
the most fundamental results in the field. Firstly, the monotonicity theorem. This says
that any definable function on an interval in an o-minimal structure acts uniformly except
for at a finite number of points. This is a very useful result and will be used in later
proofs. Given some definable function it allows us to split into cases where the function
is continuous and strictly monotone or constant.

Secondly, the cell decomposition theorem. We define inductively the notion of a cell in
Rm, this is either a point, interval, the graph of some definable function on a given cell or
the space between the graphs of two distinct definable functions on a cell. Next we define
the notion of a decomposition of Rm into cells, this is a finite partition of Rm into cells.
Finally, the theorem tells us that given any finite collection of definable sets in Rm there
is a decomposition of Rm into cells which partitions each of the given sets.

In later chapters we will make frequent use of both these theorems, highlighting how
important they are.

Remark 2.1.1. Throughout this chapter fix an o-minimal structure (R,<,S) and as usual
we say that a set A ⊆ Rm is definable to mean that A belongs to S.

Also, throughout the rest of the report we equip R with the interval topology - the open
sets of R are thus the intervals and any union of intervals. We equip Rm with the induced
product topology - the cartesian products of intervals in R and any union of such products
are the open sets. So when we speak of properties such as continuity we mean in the
topological sense (See Aside 1). Also note thatRm is a hausdorff space with this topology
(this is easy to see given that the ordering, <, on R is dense) [3, p. 17].
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Chapter 2. Monotonicity and Cell Decomposition

2.2. Monotonicity

We begin with the statement of the monotonicity theorem.

Theorem 2.2.1. [3, p. 43] Monotonicity Theorem. Let f : (a, b) → R be a definable
function on the interval (a, b). Then there are points a1, ..., ak in (a, b) such that on each
subinterval (aj, aj+1), with a0 = a, ak+1 = b, the function is either constant, or strictly
monotone and continuous.

This theorem means that a definable function in one variable can be cut into pieces such
that on each piece the function is well-behaved.

Figure 2.1.: Example of a function on R which can be cut up ‘nicely’

In the above figure 2.1 the function shown is not continuous or strictly monotone on the
interval (a, b), however taking a0 = a, a4 = b the function is then either constant, or
strictly monotone and continuous on the intervals (ai, ai+1) with 0 ≤ i ≤ 3.

This is not trivial however; consider a function such as f(x) =sin(x) on the interval
R = (+∞,−∞). This cannot be cut into pieces in such a way as above as we would need
an infinite number of subintervals. This shows, in fact, that f(x) =sin(x) on the interval
(+∞,−∞) is not definable for any o-minimal structure. For an even better example
consider the Weierstrass function on an interval of the real line which is continuous
everywhere but not strictly monotone or constant on any subinterval.

The theorem was first proved in [1] by Pillay and Steinhorn.
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Chapter 2. Monotonicity and Cell Decomposition

As this is an important theorem I will give the proof that is given in [3], in places giving
a little more detail. We first begin by proving the following lemma:

Lemma 2.2.2. [3, p. 43] Let f : I → R be a definable function on an interval I .

1) There is a subinterval of I on which f is constant or injective.

2) If f is injective, then f is strictly monotone on a subinterval of I .

3) If f is strictly monotone, then f is continuous on a subinterval of I .

I will first consider the proof of this lemma and then explain how the monotonicity
theorem follows from them.

Van den Dries does not mention o-minimality explicity in the proof he gives of this
lemma, so I will give the proof as given by van den Dries [3, p. 44] but will add in
some explanation to make clear why the o-minimality condition is important.

Proof. 1 Suppose that for some y ∈ R the preimage, f−1(y), is infinite. Then this
preimage contains a subinterval of I . Why is this the case? Well, we have seen
in an earlier example (1.3.8) that the preimage of a definable set under a definable
function is itself definable. Hence, f−1(y) is definable. So, we have an infinite,
definable set f−1(y) ⊆ R. By o-minimality, f−1(y) is a finite union of intervals
and points of R. In order for f−1(y) to be infinite it must then contain at least one
interval. Hence, f−1(y) contains a subinterval of I . In this case, clearly f takes a
constant value, y, on this subinterval of I .

So, we may assume that f−1(y) is finite for all y ∈ R. Then, as I is infinite, it must
be the case that f(I) is infinite.

f(I) is definable [this can be seen by the formula:
y ∈ f(I) ⇐⇒ ∃x(x ∈ I & (x, y) ∈ Γ(f)) ] and f(I) is infinite. So again,
as above, by o-minimality, f(I) must contain an interval, J .

Define a function g : J → I by

g(y) := min{x ∈ I : f(x) = y}

Clearly g is injective. This also implies that g(J) is infinite (as J is infinite). We
can also see that g(J) is definable. Again this implies, by o-minimality, that g(J)

contains a subinterval of I .
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Then f is injective on this subinterval of I , as suppose not, then for some
c, d ∈ g(J) with c < d, f(c) = f(d). Then, g(f(d)) = g(f(c)) ≤ c ⇒ d /∈ g(J).
Contradiction.

2 The proof here is rather lengthy and not very enlightening so I will omit this.

3 Assume that f is strictly increasing (the proof when f is strictly decreasing is
essentially the same). Then f−1(y) is finite for all y ∈ R. Hence, as in (1), f(I) is
infinite and so contains an interval, J ⊆ f(I).

Let r, s ∈ J be such that r < s and let c, d be their respective preimages i.e.
f(c) = r, f(d) = s, c < d. Now, f : (c, d)→ (r, s) is an order preserving bijection
(as f is strictly increasing). Take an open set, V = (r′, s′) ⊆ (r, s). Then clearly
f−1(V ) = (c′, d′) for some c′, d′ with c ≤ c′ < d′ ≤ d. Hence, f is continuous on
(c, d).

Now that we have the above lemma, we can move on to prove the monotonicity theorem.

Proof of Monotonicity Theorem. [3, p. 44] Let

X = {x ∈ (a, b) : on some interval containing x the function f is either constant,

or strictly monotone and continuous}

Suppose that (a, b)−X is infinite. Then, by o-minimality, (a, b)−X contains an interval,
I . Consider f : I → R. As I is definable and f is definable we can apply Lemma
2.2.2 1) If there is a subinterval of I on which f is constant then I ∩ X 6= ∅ which is
a contradiction. So there must be a subinterval, J of I where f is injective. Then, by
applying (2) to J we get that f is strictly monotone on a subinterval of J . Applying (3)
we get that f is strictly monotone and continuous on a subinterval of I . Hence, I ∩X 6= ∅
which is a contradiction.

Hence, (a, b)−X is finite. So there are a finite number of points in (a, b) at which, if any
interval contains them then f is neither constant nor strictly monotone and continuous on
that interval. Hence X is in fact a finite union of intervals. We consider an arbitary one of
these intervals, (c, d) say.
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Now, at every point x ∈ (c, d), f is continuous on an interval around x. Hence, f is
continuous on (c, d).

We can now split into three cases:

1 for all x ∈ (c, d), f is constant on a neighbourhood of x

2 for all x ∈ (c, d), f is strictly increasing on a neighbourhood of x

3 for all x ∈ (c, d), f is strictly decreasing on a neighbourhood of x

Case 1: Let x′ ∈ (c, d). Set

s := sup{x ∈ (c, d) : x′ < x < d, f is constant on [x′, x)}

Suppose for a contradiction that s < d. Then s ∈ (c, d), so f is constant on some
neighbourhood of s, say (s− i, s+ i) where we take i so that (s− i, s+ i) ⊆ (c, d), then
s + i > s and s + i ∈ sup{x ∈ (c, d) : x < x < d, f is constant on [x′, x)} which is a
contradiction. Hence, s = d.

This proves that f is constant on [x′, d). We can prove in the same way that f is constant
on (c, x′]. Hence, f is constant on (c, d).

Case 2: The argument here is very similar to case one so I will omit this, we show that f
is strictly increasing on (c, d) instead of constant.

Case 3: It is shown that f is strictly decreasing on (c, d), again I will omit this argument
as it is similar to case 1.

So, we have split (a, b) into a finite number of intervals on which f is either constant, or
strictly monotone and continuous. This concludes the proof.

The following lemma is considered a basic result by van den Dries and will be useful later
on. The proof introduces some new concepts and is quite lengthy so I will not include
it. I will, however give a proof for a result combining the following lemma with the
monotonicity theorem.

It will first be necessary to define the term fiber.

Definition 2.2.3. [3, p. 59] Let A ⊆ Rm+n be definable. Then for each x ∈ Rm the fiber,
Ax, is defined to be the set {y ∈ Rn : (x, y) ∈ A} ⊆ Rn.
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For a two dimensional representation of this see Figure 2.2.

Figure 2.2.: Representation of the fiber Ax

We can see that in Figure 2.2 the fiber Ax is just the interval (a, b) and the boundary of
Ax, bd(Ax), is the set {a, b}.
Example 2.2.4. Let f : Rm → R be some function and let

A = Γ(f) = {(x, f(x)) : x ∈ Rm}.

Then the fiber Ax is just the set containing the point f(x).

Remark 2.2.5. Note that the notation for indexing sets and fibers as above is the same. It
should be clear which is meant from the context and generally subscripts x or y will be
used for fibers and k or λ used for indexing sets.

Given a definable set A ⊆ Rm+n and x ∈ Rm, the fiber Ax is clearly definable, to see this
note that y ∈ Ax ⇐⇒ (x, y) ∈ A. This is a fact that will be used frequently throughout.

Lemma 2.2.6. [3, p. 46] Finiteness Lemma. Let A ⊆ R2 be definable and suppose that
for each x ∈ R the fiber Ax := {y ∈ R : (x, y) ∈ A} is finite. Then there is N ∈ N such
that |Ax| ≤ N for all x ∈ R.

If it is the case that for each x ∈ R there is only a finite number of points, y ∈ R such
that (x, y) ∈ A, then by the above lemma there is an upper bound, N , such that given any
x ∈ R there is no more than N points y ∈ R such that (x, y) ∈ A.
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Proof. Omitted.

The following result is given by van den Dries but a proof is not given. I will give a proof.

Lemma 2.2.7 (Combining Monotonicity and Finiteness). [3, p. 49] Let A ⊆ R2 be
definable such that Ax is finite for each x ∈ R. Then there are points a1 < ... < ak

in R such that the intersection of A with each vertical strip (ai, ai+1) × R has the form
Γ(fi1) ∪ ... ∪ Γ(fin(i)) for some definable continuous functions fij : (ai, ai+1) → R with
fi1(x) < ... < fin(i)(x) for all x ∈ (ai, ai+1). (We set a0 = −∞, ak+1 = +∞).

Proof. First, we need to prove that we can split R into a finite number of intervals
(bi, bi+1) such that for every i and each x, y ∈ (bi, bi+1), |Ax| = |Ay|.

Let

X = {x ∈ R : for some subinterval (c, d) of R containing x, for all y ∈ (c, d)|Ax| = |Ay|}.

Assume for a contradiction that R − X is infinite. Note that X is clearly definable and
thus so is R − X . Hence, R − X contains an interval by o-minimality. Let’s call this
interval (r, s).

By the Finiteness Lemma we know that there is an N ∈ N such that |Ax| ≤ N for all
x ∈ R. In particular, |Ax| ≤ N for all x ∈ (r, s). As (r, s) is infinite and the fibers are
bounded by N there must be an n ∈ N such that there are infinitely many y ∈ (r, s) with
|Ay| = n.

Let Y be this subset of (r, s) i.e. for all y ∈ Y, |Ay| = n. Then Y is infinite. Y is clearly
also definable. Hence Y contains an interval by o-minimality. This is a contradiction as
Y is a subset of R−X . Hence R−X is finite.

Let R − X = {b1, ..., bk}. Similar to the arguments about the three cases in the
monotonicity proof, it is clear that for each interval (bi, bi+1) and every x, y ∈ (bi, bi+1),
|Ax| = |Ay|. Now, for each i, set n(i) = |Ax| where x ∈ (bi, bi+1).

We can now define functions on each interval (bi, bi+1) as follows:

fi1(x) = minAx

fi2(x) = min(Ax − {fi1(x)})
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...

fin(i)(x) = min(Ax − ({fin(i)−1(x)} ∪ ... ∪ {fi1(x)})

Then for each i the functions are well defined and satisfy the conditions,
fi1(x) < ... < fin(i)(x) and A ∩ ((bi, bi+1)×R) = Γ(fi1) ∪ ... ∪ Γ(fin(i)).

However, it may not be the case that every function, fij , is continuous on the subinterval
(bi, bi+1). Applying the monotonicity theorem to each fij we further split up the intervals
(bi, bi+1) into subintervals (ai, ai+1) on which the functions are continuous and hence
satisfy the conditions as required.

The following example is given as an exercise by van den Dries, it shows that the points
a1, ..., ak in the statement of the monotonicity theorem are definable. It will also be used
later to prove a strengthened version of cell decomposition.

Proposition 2.2.8. [3, p. 49] Suppose the function f : (a, b)→ R on the interval (a, b) is
definable. Show that there exist elements a1, ..., ak with the property of the monotonicity
theorem such that a1, ..., ak are definable in the model-theoretic structure 〈R,<,Γ(f)〉.

Proof. Split the interval (a, b) using the monotonicity theorem to obtain points a1, ..., ak

such that f is continuous and strictly monotone or constant on the intervals (ai, ai+1) for
0 ≤ i ≤ k + 1 where a0 = a and ak+1 = b. We may suppose that splitting the interval in
this way does so with the least number of points necessary.

First note that a0 is definable in〈R,<,Γ(f)〉 as it is the infimum of the definable set
π(Γ(f)).

Then x = a1 ⇐⇒ a0 < x and f is either constant or strictly monotone and continuous
on (a0, x) and for all t > x, f is neither constant nor strictly monotone and continuous on
(a0, t).

This is a slightly informal solution for defining a1 in 〈R,<,Γ(f)〉, though it should be
clear that this can be expressed formally.

We can also define a2, ..., ak in 〈R,<,Γ(f)〉 in a similar way, for example x = a2 if
x > a1 and f is either constant or strictly monotone and continuous on (a1, a2) and
f is neither constant nor strictly monotone and continuous on any interval (a1, t) with
t > a2.
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2.3. Cell Decomposition

2.3.1. Cells

In order to get to the main theorem of this chapter, it will be necessary to introduce the
idea of a cell. Due to the cell decomposition theorem cells have an important place in
work on o-minimality so I will also give a result regarding the topological nature of cells.
They are also interesting as each cell is homeomorphic to Rk for some k.

We begin by giving some notation.

Let X ⊆ Rm be a definable set. We define

C(X) := {f : X → R : f is definable and continuous}

i.e. the set containing all definable and continuous functions on X . We define

C∞(X) := C(X) ∪ {−∞,+∞}

i.e. C(X) along with the constant functions mapping any element of X to −∞ or +∞
[3, p. 49].

We write f < g to mean that for all x ∈ X , f(x) < g(x). Let f, g ∈ C∞ and f < g, we
define

(f, g)X := {(x, r) ∈ X ×R : f(x) < r < g(x)}.

As noted by van den Dries this is a definable set [3, p. 49].

Below we give an inductive definition of cells.

Definition 2.3.1. [3, p. 50] Let (i1, ..., im) be a sequence of zeros and ones of length m.
An (i1, ..., im)-cell is a definable subset of Rm obtained by induction on m as follows:

(i) a (0)-cell is a one element set {r} ⊆ R, a (1)-cell is an interval (a, b) ⊆ R;

(ii) suppose (i1, ..., im)-cells are already defined; then an (i1, ..., im, 0)-cell is the graph,
Γ(f) of a function f ∈ C(X), where X is an (i1, ..., im)-cell; a (i1, ..., im, 1)-cell is
a set (f, g)X where X is an (i1, ..., im)-cell and f, g ∈ C∞, f < g

For a graphical interpretation of some cells in R and R2, see Figure 2.3.
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Figure 2.3.: Cells in R2

Remark 2.3.2. [3, p. 50] We call the (1, ..., 1)-cells the open cells as they are the cells
which are open in the ambient space. Also, we can see that by ‘stretching’ the (1, 1)-
cell we can obtain the entire space R2, similarly with the (0, 1) and (1, 0) cells we can
obtain R. In topological terms, these cells are homeomorphic to the respective spaces.
This can be extended to any (i1, .., im)-cell with it being homeomorphic to Rn where
n =

∑m
j=1 i(j). This is the content of the following definition.

We define a function which will be used in the proof of the cell decomposition theorem.
It takes any cell and performs a coordinate projection which removes the co-ordinates
corresponding to zeroes.

Definition 2.3.3. [3, p. 51] Let i = (i1, ..., im). We define the function pi : Rm → Rk

as follows: let λ(1) < ... < λ(k) be the indices λ ∈ {1, ..,m} for which iλ = 1, so that
k = i1 + ...+ im; then

pi(x1, ..., xm) := (xλ(1), ..., xλ(k)).

For an i-cell A we denote pi(A) by p(A) and pi|A : A→ p(A) by pA.

Van den Dries notes that this map is a homeomorphism, taking each cell A in Rm to an
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open cell in Rk. What will be particularly important later is that this map is bijective, so I
will provide a proof of this. If we consider Figure 2.3; we can see that the (0, 1)-cell can
be bijectively mapped onto the vertical axes and the (1, 0)-cell can be mapped bijectively
onto the horizontal axes. Below I will make this more formal.

Lemma 2.3.4. Let pi : Rm → Rk be the function as defined above and let A ⊆ Rm be an
i-cell. Then pi|A : A→ p(A) is a bijection.

Proof. We prove by induction on m.

Base Case Let m = 0 (by convention we consider the one-point space R0 as an open
( )-cell - this being the only cell in R0. Note that graphs of functions on this cell give
all the (0)-cells and the intervals between continuous functions on this cell gives all the
(1)-cells so it is appropriate to start the induction here). Let i = (). If A is an i-cell, i.e.
A = R0 then pi|A : A→ p(A) is just the identity map and so is bijective.

Induction Hypothesis Let the result hold for m. Consider m + 1, so i = (i1, ..., im+1).
There are two cases to consider, i = (i1, ..., im, 0) and i = (i1, ..., im, 1).

Let A ⊆ Rm+1 be an (i1, ..., im, 0)-cell. Then by definition there is some (i1, ..., im)-cell,
X, and function f ∈ C(X) such that A = Γ(f). Then the projection map, π : A → X ,
on the first m coordinates is bijecitive (this is easy to check). By the inductive hypothesis
pX is bijective, hence the function pX ◦ π on A is bijective and it is clear that this is just
pi|A : A→ p(A).

Let A ⊆ Rm+1 be an (i1, ..., im, 1)-cell. Let X = π(A). Consider the function
h : X ×R→ p(X)×R defined by (x, y) 7→ (pX(x), y). As pX is bijective then so is
h|A and it is clear that h|A = pi|A.

Before we introduce the following proposition we introduce a topological notion of
connectedness as applied to definable sets.

Definition 2.3.5. [3, p. 19] A set X ⊆ Rm is called definably connected if X is definable
and X is not the union of two disjoint nonempty definable open subsets of X .

This is essentially the same as the usual topological notion of connectedness but with the
condition of being definable added.
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We now prove some basic results about definable connectedness as this will be useful
later. The following lemma is given as an exercise by van den Dries but the proof is left
as an exercise.

Lemma 2.3.6. [3, p. 19] The following are definably connected subsets of R:

(i) The empty set,

(ii) The intervals,

(iii) The sets [a, b) with −∞ < a < b ≤ +∞ and (a, b] with −∞ ≤ a < b < +∞,

(iv) The sets [a, b] with −∞ < a ≤ b < +∞.

Proof. (i) Clearly the empty set is definably connected as it cannot be the union of two
non-empty sets.

(ii) Let X = (a, b) for some a, b ∈ R. Then |bd(X)| = 2. Suppose that X is the
union of two disjoint nonempty definable open subsets, X = (c, d) ∪ (x, y). Then
|bd(X)| = 4. Contradiction. Hence X is definably connected. (Note: the case
where a, b ∈ R∞ is not included here but is easy to prove).

(iii) Let X = [a, b) with −∞ < a < b ≤ +∞ and suppose that X is the union of two
disjoint nonempty definable open subsets, X = (c, d) ∪ (x, y). Then a ∈ X ⇒
(wlog) a ∈ (c, d) ⇒ there is some a′ ∈ R with c < a′ < a and a′ ∈ X .
Contradiction. The case for (a, b] is similar.

(iv) The proof of this case is similar to (iii) so I will omit this.

We can now look at a result of definable connectedness applied to cells, telling us that
each cell is definably connected. Van den dries gives a brief proof of this but I will give
some more detail.

Proposition 2.3.7. [3, p. 51] Each cell is definably connected.

Proof. The proof is by induction. Let X ⊆ R be a cell. Then X is an interval or point,
hence X is definably connected by 2.3.6 (ii) or (iv), respectively.
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Note that if C is a cell in Rm+1 then π(C) is a cell in Rm where π is the projection map
on the first m coordinates. Suppose that all cells in Rm are definably connected. Let X
be a cell in Rm+1. Suppose for a contradiction that X is a union of two disjoint nonempty
definable open subsets of X , i.e.

X = A ∪B = (a1, b1)× ...× (am+1, bm+1) ∪ (a′1, b
′
1)× ...× (a′m+1, b

′
m+1).

Hence π(X) = π(A) ∪ π(B) = (a1, b1) × ... × (am, bm) ∪ (a′1, b
′
1) × ... × (a′m, b

′
m). If

π(A) and π(B) are disjoint then π(X) is not definably connected. Contradiction.

Suppose then that π(A) and π(B) are not disjoint. Then there is x ∈ π(A) ∩ π(B) where
π−1(x) ∩X is not definably connected as

π−1(x) ∩X = {x} × (am+1, bm+1) ∪ {x} × (a′m+1, b
′
m+1)

which are disjoint definable open subsets of π−1(x) ∩ X . This is a contradiction as for
every cell C ⊆ Rm+1 and x ∈ Rm the set π−1(x) ∩ C is definably connected.

To see this take a cell X ⊆ Rm+1 and x ∈ Rm. Consider

π−1(x) ∩X = {(x, y) : y ∈ R}

and suppose π−1(x) ∩ X = A ∪ B for some A,B nonempty definable open subsets
of π−1(x) ∩ X . If X is a (i1, ..., im, 0)-cell then π−1(x) ∩ X = {(x, f(x))} (for the
appropriate function f ) hence A = B = {(x, f(x))} and so π−1(x) ∩ X is definably
connected. If X is a (i1, ..., im, 1)-cell then π−1(x) ∩ X = {(x, y) ∈ X : c < y < d}
for some c, d ∈ R∞. Then A and B are not disjoint. Hence π−1(x) ∩ X is definably
connected.

2.3.2. Decomposition

Definition 2.3.8. [3, p. 51] A decomposition ofRm is a partition ofRm into finitely many
cells obtained by induction as follows:

(i)a decomposition of R1 = R is a collection

{(−∞, a1), (a1, a2), ..., (ak,+∞), {a1}, ..., {ak}}
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where a1 < ... < ak are points in R;

(ii) a decomposition of Rm+1 is a finite partition of Rm+1 into cells A such that the set
of projections π(A) is a decomposition of Rm. (Here π is the projection map on the
first m coordinates.)

Remark 2.3.9. Van den Dries notes the following [3, p. 52]: Let D = {A(1), ..., A(k)}
be a decomposition of Rm, A(i) 6= A(j) if i 6= j, and let for each i ∈ {1, ..., k} functions
fi1 < ... < fin(i) in C(Ai) be given. Then

Di := {(−∞, fi1), (fi1, fi2), ..., (fin(i),+∞),Γ(fi1), ...,Γ(fin(i))}

is a partition of A(i) × R and, importantly, D∗ := D1 ∪ ... ∪ Dk is a decomposition of
Rm+1. This will be useful in the proof of the following theorem.

Note: Here, van den Dries introduces the notion of a decomposition partitioning a subset
of Rm which is necessary for the cell-decomposition theorem. Let D be a decomposition
of Rm. Then we say that D partitions a set X ⊆ Rm if for each cell A ∈ D, A ⊆ X or
A∩X = ∅. This is equivalent to saying that X is a disjoint union of cells of D [3, p. 52].

We now give the main theorem of this section.

Theorem 2.3.10. [3, p. 52] Cell Decomposition Theorem.

(Im)Given any definable sets A1, ..., Ak ⊆ Rm there is a decomposition of Rm

partitioning each of A1, ..., Ak.

(IIm)For each definable function f : A → R, A ⊆ Rm, there is a decomposition D of
Rm partitioning A such that the restriction f |B : B → R to each cell B ∈ D with
B ⊆ A is continuous.

Again, as this is such a fundamental result to the field I will give the proof as given in
[3], adding more detail where necessary. The theorem was first proved in [2] by Knight,
Pillay and Steinhorn.

Proof. The proof proceeds via induction onm. We start with (I1) and (II1). Van den Dries
notes that (I1) holds by o-minimality and (II1) holds from the monotonicity theorem. Why
is this the case?
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(I1) Well, if A1, ..., Ak ⊆ R are definable then they are just finite unions of intervals
and points (by o-minimality). So by picking a1 < ... < ak in R appropriately we get a
decomposition of R partitioning each Ai.

(II1) Let f : A → R, A ⊆ R be a definable function. Then by the monotonicity
theorem we split A into intervals (ai, ai+1) such that f is continuous on each interval.
The decomposition of R, D = {(−∞, a1), ..., (ak,+∞)} then gives the required
decomposition.

The rest of the proof given by van den Dries is much more involved. I will outline the
proof and try to explain some of the geometric intuition behind some of the concepts
given.

First it will be necessary to introduce the notion of uniform finiteness and give a result
about it.

Definition 2.3.11. [3, p. 53] A set Y ⊆ Rm+1 is finite over Rm if for each x ∈ Rm the
fiber Yx is finite. We say that Y is uniformly finite over Rm of there is N ∈ N such that
|Yx| ≤ N for all x ∈ Rm. (Recall this is the property proved in the finiteness lemma).

Lemma 2.3.12. [3, p. 53] Uniform Finiteness Property. Suppose the definable subset
Y ⊆ Rm+1 is finite over Rm. Then Y is uniformly finite over Rm.

Proof. We see that this is just a generalization of the finiteness lemma to m > 2. The
proof of this lemma uses the finiteness lemma for the base case and then proves the general
case by induction. I will omit this.

To begin the proof of (I1) we introduce some notation. Let A ⊆ Rm+1 be definable, then
we set

bdm(A) := {(x, r) ∈ Rm+1 : r ∈ bd(Ax)}.

First, note that this set is definable. To get an idea of what this set is first consider Figure
2.4.

We can see that bd((A1)x) is the set {a, b}.

So we attain the entire set bdm(A1) by considering each x ∈ Rm+1. This is given as blue
lines in Figure 2.4.
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Figure 2.4.: Representation of bdm(A1)

Further, take some x ∈ Rm then the fiber

(bdm(A))x = {r ∈ R : (x, r) ∈ bdm(A)} = bd(Ax)

is finite by Lemma 1.4.5. Hence, bdm(A) is finite over Rm. Here, A was an arbitrary
definable set, so bdm(A) is finite over Rm for any definable subset A ⊆ Rm+1.

(Im+1) We now take definable subsets A1, ..., Ak ⊆ Rm+1 and, assuming (Im) and (IIm),
give a decomposition which partitions these subsets.

First, set
Y := bdm(A1) ∪ ... ∪ bdm(Ak).

Then as each bdm(Ai) is definable, so is Y . Also, let x ∈ Rm. Then

|Yx| ≤ |(bdm(A1))x|+ ...+ |(bdm(Ak))x|

which is finite as each bdm(Ai) is finite over Rm. Hence, Y is finite over Rm and so Y
is uniformly finite over Rm by the uniform finiteness property. Let M ∈ N be the bound,
i.e. for all x ∈ Rm, |Yx| ≤M .

Now consider i ∈ {0, ...,M} and set Bi := {x ∈ Rm : |Yx| = i}.

We now define functions, fi1, ..., fii on each Bi by

Yx = {fi1(x), ..., fii(x)}, fi1 < ... < fii.
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Figure 2.5.: Representation of fi1, ..., fii

Also, for each i we set fi0 := −∞ and fii+1 := +∞ as constant functions.

To understand how these functions are defined consider Figure 2.5. Y is the set containing
all the green, red and blue lines. The setB1 = ∅,B2 corresponds to the firstm coordinates
of the green and red lines and B4 corresponds to the first m coordinates of the blue lines.
Moreover, f21 corresponds to the red lines and f22 corresponds to the green lines.

Now for λ ∈ {1, ..., k}, i ∈ {0, ...,M} and 1 ≤ j ≤ i we define

Cλij := {x ∈ Bi : fij(x) ∈ (Aλ)x}.

And for 0 ≤ j ≤ i define

Dλij := {x ∈ Bi : (fij(x), fij+1(x)) ⊆ (Aλ)x}.

It is not immediately clear what these sets are defining.

The Cλij gives the first m components of the lines in the above Figure 2.5 and the Dλij

gives the firstm components of the spaces between these lines. I will show more formally
why these sets are important later.

Now we see that eachBi, Cλij andDλij is a definable subset ofRm and there are also only
finitely many of them. Hence, by the inductive hypothesis we can take a decomposition,
D of Rm which partitions Bi, Cλij and Dλij (Im) such that for every E ∈ D, if E ⊆ Bi

then fi1|E, ..., fii|E are continuous functions (IIm).
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Now for each cell E ∈ D set

DE := {(fi0|E), ..., (fii+1|E),Γ(fi1|E), ...,Γ(fii|E)}.

Where i is such that E ⊂ Bi. (Note that we can do this as D partitions the Bi.)

Then D∗ := ∪{DE : E ∈ D} is a decomposition of Rm+1 by Remark 2.3.9.

Van den Dries notes that D∗ partitions A1, ..., Ak. Why is this the case?

Well, lets take some H ∈ D∗. Then H ∈ DE for some E ∈ D. We want to show that for
any λ either H ⊆ Aλ or H ∩ Aλ = ∅. Suppose E ⊆ Bi. There are two cases to consider:

Case 1 H = (fij|E, fij+1|E) for some 0 ≤ j ≤ i + 1. Suppose that H ∩ Aλ 6= ∅ and let
h ∈ H ∩ Aλ.

Then h = (x, r) for some x ∈ E such that fij(x) < r < fij+1(x) i.e. x ∈ E ∩ Dλij by
construction of the functions fij .

Take an arbitrary element y ∈ H . Then y = (x′, r′) for some x′ ∈ E such that
fij(x

′) < r′ < fij+1(x′).

Suppose for a contradiction that y /∈ Aλ. Then x′ /∈ Dλij . This is a contradiction as D
partitions the sets Dλij .

Case 2 H = Γ(fij|E) for some 1 ≤ j ≤ i. The proof for this case is similar as above but
instead we use the fact that D partitions the Cλij .

This concludes the proof of (Im+1).

Now for (IIm+1).

We will use the following result.

Lemma 2.3.13. [3, p. 56] Let X be a topological space, (R1, <), (R2, <) dense linear
orderings without endpoints and f : X×R1 → R2 a functions such that for each (x, r) ∈
X ×R1

(i) f(x, ·) : R1 → R2 is continuous and monotone on R1,

(ii) f(·, r) : X → R2 is continuous at x.

Then f is continuous.
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Proof. The proof here does not add to the comprehension of the proof of the cell
decomposition theorem so I will omit it.

Let f : A→ R be a definable function on a definable set A ⊆ Rm+1. We show that there
is a decomposition with f continuous on each cell that is contained in A.

If we can partition A into finitely many definable sets A1, ..., Ak such that f is continuous
on each Ai then by (Im+1) there is a decomposition, D, of Rm+1 partitioning each Ai.
Hence, for every cell B ∈ D if B ⊆ A then B ⊆ Ai for some i. Hence f is continuous
on B and we are done.

Now, again due to (Im+1), it is possible to partition A into finitely many cells. Hence, if
we prove the result on an arbitary cell contained in A then we are done. For simplicity we
may just assume that A is a cell.

We first consider the case where A is not open. So, A is a (i1, ..., im+1)-cell where ij = 0

for some 1 ≤ j ≤ m+ 1.

Then consider the homeomorphism (defined in 2.3.3), pA : A → p(A). Then as A is not
open, p(A) ⊆ Rn for some n ≤ m. Then by the inductive hypothesis (IIm) p(A) can be
partitioned into finitely many definable sets,B1, ..., Bl such that (f ◦p−1

A )|Bj is continuous
for each j. Therefore, p−1

A (B1), ..., p−1
A (Bl) partitions A and f |p−1

A (Bj) is continuous as
required.

Now consider the case thatA is an open cell. We first define the notion of a function being
well-behaved. We say that a functionf is well-behaved at a point (p, r) ∈ A if p ∈ C for
some box (i.e. cartesian product of intervals) C ⊆ Rm and a < r < b for some a, b ∈ R
such that

(i) C × (a, b) is contained in A

(ii) for all x ∈ C f(x, ·) is continuous and monotone on (a, b)

(iii) f(·, r) is continuous at p

We define A∗ to be the set of all points in A where f is well-behaved. We also note that
A∗ is definable.

Van den Dries gives and proves the claim that A∗ is dense in A. Again as this does not
add much to the understanding of the theorem I will leave out this proof.
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As we are assuming Im+1 we can take a decomposition, D, of Rm+1 partitioning A and
A∗. Consider a cell, E ∈ D contained in A. We must show that f is continuous on E,
or that we may take a decomposition of Rm+1 partitioning E where f is continuous on
each cell of this new decomposition. Van den Dries does not mention this, but if E is not
open then we can use the same argument as before using the function p (from 2.3.3) to
show that we can partition E into finitely many cells on which f is continuous. So we
may suppose that E is open.

As E ⊆ A and A∗ is dense in A then E ∩ A∗ 6= ∅ (See aside on topology). Further, as
D partitions A∗ then E ⊆ A∗. Then f is well-behaved at every point in E, so, for every
point (p, r) ∈ E, f(·, r) is continuous at p and every point in E is contained in some box
C × (a, b). Moreover, every such box is contained in E. Hence, E is a union of boxes
C × (a, b) satisfying conditions (i),(ii),(iii). Now, if we take X = C, R1 = (a, b) and
R2 = R in Lemma 2.3.13 then we see that f is continuous on each box C × (a, b) and
therefore f is continuous on D.

This completes the proof of IIm+1 and of the cell decomposition theorem.

To see that the assumption of o-minimality is appropriate for the cell decomposition
theorem consider the structure R = 〈R, <, sin〉. This is not o-minimal as the set
A = {y ∈ R : sin(y) = 0} ⊆ R is definable in R and is not a union of finitely many
intervals and points. A is a union of infinitely many points in R, hence a decomposition
of R into cells which partitions A does not exist, as one would require an infinite number
of (0)-cells.

I will now prove a strengthened version of the cell decomposition, given as an exercise
here [3, p. 58].

First a quick proposition.

Proposition 2.3.14. Let A be an i-cell where i = (i1, ..., im). Let k = i1 + ...+ im and let
λ(1) < ... < λ(k) be the indices for which iλ(j) = 1, where 1 ≤ j ≤ k. If A is definable
inR = 〈R,<〉 then pi|A : A→ p(A) (see 2.3.3 for definition) is definable inR.
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Proof.

(x1, ..., xm, y) ∈ Γ(pi|A) ⇐⇒ (x1, ..., xm) ∈ A & pi(x1, ..., xm) = y

⇐⇒ x ∈ A & (xλ(1), ..., xλ(k)) = y.

Proposition 2.3.15. Below, unless specified, ‘definable’ means definable in some given
o-minimal structure.

(Idefm ) If the sets A1, .., Ak ⊆ Rm are definable, then there is a decomposition of Rm

partitioning each set Ai, all of whose cells are definable in the model-theoretic
structure 〈R,<,A1, ..., Ak〉.

(IIdefm ) Let the function f : A→ R,A ⊆ Rm, be definable. Then there is a decomposition
D of Rm partitioning A, such that the restriction f |B to each cell B ∈ D

with B ⊆ A is continuous, and each cell in D is definable in the model-theoretic
structure 〈R,<,Γ(f)〉.

Proof. (Idefm ) We prove by induction and begin by proving Idef1 . Let A1, .., Ak ⊆ R be
definable. Then, from o-minimality, each Ai is a finite union of cells. First, we
show that a specific element a is definable in R = 〈R,<,A1, ..., Ak〉. We define
a to create a left-hand interval (−∞, a) which, given any i, is either contained in
or disjoint from Ai. x = a ⇐⇒ for each i the following holds, for all y with
−∞ < y < a, y /∈ Ai or for all y if −∞ < y < a then y ∈ Ai and a is the largest
such element which has this property.

Then define the cells C0 by x ∈ C0 ⇐⇒ x ∈ (−∞, a) and C1 by x ∈ C1 ⇐⇒
x = a.

We then repeat this process for
⋃k
i=0Ai − (−∞, a] where in some sense −∞ is

replaced by a. This gives the required cell decomposition.

Induction Hypothesis Let Idefn hold for all n ≤ m. Consider definable sets
A1, ..., Ak ⊆ Rm+1. We will refer to the cell decomposition proof. Let Bi, Cλij and
Dλij be as in the proof of the cell decomposition, with i ∈ {0, ...,M}, λ ∈ {1, ..., k}
and j ∈ {1, ..., i}. Then by the induction hypothesis there is a decomposition,
D, of Rm into cells partitioning each Bi, Cλij and Dλij such that the cells in the
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decomposition are definable in 〈R,<, (Bi), (Cλij), (Dλij)〉 (*). (Note the notation
here, I’ve written (Bi) to denote B0, ..., BM etc..). Then D∗ (as in the original
proof) is a decomposition of Rm+1 which paritions A1, ..., Ak. Let H ∈ D∗ then
there are two cases to consider 1) H = (fij|E, fij+1|E) or 2) H = Γ(fij|E) for
some function fij and E ∈ D. In case 1),

(x, y) ∈ H ⇐⇒ x ∈ E & fij(x) < y < fij+1(x).

In case 2),
(x, y) ∈ H ⇐⇒ x ∈ E & fij(x) = y.

Note that each fiber (Aλ)x is definable inR = 〈R,<,A1, ..., Ak〉 and so bd((Aλ)x)

is definable in R. Hence every bdm(Aλ) is clearly definable in R and so Y is
definable in R. (For the definitions of Y and bdm(Aλ) see the proof of the cell
decomposition). This gives that each fiber Yx is definable in R ⇒ every Bi is
definable in R ⇒ every fij and Cλij , Dλij is definable in R. Hence, as E is
definable in 〈R,<, (Bi), (Cλij), (Dλij)〉 by (*), then E is definable inR.

Hence, E, fij and fij+1 are definable inR so H is definable inR in either case.

(IIdefm ) Again, we prove by induction and begin by proving IIdef1 . LetR = 〈R,<,Γ(f)〉.
A is a finite union of intervals and points so we apply the monotonicity theorem to
each interval contained in A. This gives a1 < ... < ak such that if (ai, ai+1) ⊆ A

then f is continuous on (ai, ai+1). Also, if {ai} ⊆ A then f is continuous on {ai}.
Now, using Proposition 2.2.8 we can take a1, ..., ak such that they are definable in
R.

LetD = {(−∞, a1), ..., (ak,+∞), {a1}, ..., {ak}}. ThenD is a cell decomposition
of R, every cell in D is definable in R and f is cellwise continuous with respect to
this decomposition as required.

Induction Hypothesis Let IIdefn hold for all n ≤ m. Again, we will refer to the cell
decomposition proof. In particular, we suppose that A is a cell. If A is not open
then consider p(A) ⊆ Rn where n < m + 1, this is the map from 2.3.3. Then by
IIdefn and that fact that p(A) and f ◦ p−1

A are definable, there is a decomposition, D,
of Rm into cells that partitions p(A) such that for all B ∈ D if B ⊆ p(A) then
f ◦ p−1

A |B is continous and each B ∈ D is definable in 〈R,<,Γ(f ◦ p−1
A )〉 (*). Let

D = {B1, ..., Bl}.
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Now the restriction of f to p−1
A (B) is continuous for each B ∈ D where

p−1
A (B) ⊆ A. By Idefm+1 we can partition each p−1

A (Bi) by an appropriate
cell decomposition, D′, where each cell in the decomposition is definable in
〈R,<, p−1

A (B1), ..., p−1
A (Bl)〉 (+). Let D′ = {C1, ..., Ct}. Hence, if Ci ⊆ A then

Ci ⊆ p−1
A (B) for some B ∈ D, hence f is continuous on Ci.

We now show that f ◦ p−1
A is definable in R = 〈R,<,Γ(f)〉. Note again that A

is definable in 〈R,<,Γ(f)〉. (x, y) ∈ Γ(f ◦ p−1
A )⇐⇒ there is some a ∈ A such

that pA(a) = x and f ◦ p−1
A (x) = y ⇐⇒ there is some a1, ..., am+1 ∈ R such that

(a1, ..., am+1) ∈ A and (aλ(1), ..., aλ(n)) = x and (a1, ..., am+1, y) ∈ Γ(f). Note that
the choice of λ(i) is given by A, as in 2.3.14.

Hence, f ◦p−1
A is definable inR. By (*), this implies that every Bi ∈ D is definable

inR. Now for eachBi ⊆ p(A), (x1, ..., xm+1) ∈ p−1
A (Bi) ⇐⇒ there exists y ∈ Bi

such that (xλ(1), ..., xλ(n)) = y. Hence, for each Bi ⊆ p(A), p−1
A (Bi) is definable in

R. Hence, by (+) every Ci is definable inR as required.

Now suppose that A is open. Let A∗ be the set containing all points in A at which f
is well-behaved (see the proof of cell decomposition for this definition). We show
that A∗ is definable in R. (p, r) ∈ A∗ ⇐⇒ (p, r) ∈ A and there exists some box
C ⊆ Rm and a, b ∈ R with a < r < b such that C × (a, b) ⊆ A and for all y ∈ C,
f(y, ·) is continuous and monotone on (a, b) and f(·, r) is continuous at p. This
shows informally that A∗ is definable inR.

Now, by Idefm+1, take a decomposition, D′′, of Rm+1 that partitions A and A∗ such
that every cell in D′′ is definable in 〈R,<,A,A∗〉. As is the orginial proof, this
decomposition satifies that f be cellwise continuous. Also A and A∗ are definable
inR, hence every cell inD′′ is definable inR, giving us the required decomposition.
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3. Curve Selection

3.1. Introduction

In this chapter I will look at a particular property, curve selection, which holds for a
particular class of o-minimal structures - expansions of ordered abelian groups. In order
to show that curve selection holds we first begin by showing that it is possible to pick an
element from a definable set, in a definable way, this then quickly leads to definable
choice. A nice way to understand definable choice is that it tells us that for certain
relations, there exists definable functions which ‘pick’ instances such that the relations
hold. From these results we see that curve selection follows. This is a very useful result
as normally we have no notion of distance and so cannot use the usual ideas of points in
the closure of a set being the limits of sequences. Curve selection, however, provides us
with a means of deducing that an element is in the closure of a set, saying that an element,
x, is contained in the closure of a set if it is a limit point of a definable continuous injective
map from an interval to the set.

I will then give an application of this fact in order to show that the image of a continuous
definable map of a closed and bounded set is itself closed and bounded. From this we
can also deduce a fixed point theorem for definable functions in o-minimal expansions of
ordered abelian groups and I will show this.

I will also introduce a strict notion of dimension which will be useful in order to show
that curve selection does not hold for arbitrary o-minimal structures.

3.1.1. Preliminaries

Before beginning this chapter it will be necessary to describe what is meant by an
expansion. Van den Dries defines this notion by way of example, giving the example

37
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of an ordered abelian group [3, p. 23]. I will give this example and a further example that
will be useful in later chapters.

Consider an o-minimal structure (R,<,S). We say that (R,<,S) expands an ordered
abelian group if there are is a zero element 0 in R and functions− : R→ R, + : R2 → R

belonging to S such that (R,<, 0,−,+) is an ordered abelian group.

Similarly (R,<,S) expands the ordered field of real numbers if R = R (clearly
containing 0 and 1) and the functions +, · : R2 → R belong to S such that
(R,<, 0, 1,+, ·) is a field.

So, to say that an o-minimal structure expands some algebraic structure just means that
the o-minimal structure contains all the operations of the algebraic structure.

For the rest of this chapter we fix an o-minimal structure (R,<,S) which expands an
ordered abelian group (R,<, 0,−,+).

We also set

|x| :=

x if x ≥ 0,

−x if x < 0

for x ∈ R and |x| := max{|x1|, ..., |xm|} for x = (x1, ..., xm) ⊆ Rm where m > 0.

3.2. Curve Selection

3.2.1. Dimension

The notion of dimension will be useful for proofs in this section. I will give the definition
and a useful result given by van den Dries in chapter 4 of his book.

Definition 3.2.1. [3, p. 63] We define the dimension of a nonempty definable setX ⊆ Rm

by
dimX := max{i1 + ...+ im : X contains an (i1, ..., im)-cell}.

To the empty set we assign dimension −∞.

In particular, if X is an (i1, ..., im)-cell then dim(X) = i1 + ...+ im.
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Chapter 3. Curve Selection

Below I will give a useful result and provide a sketch of the proof. This result tells us
that definable bijections preserve dimension. Thus if two definable subsets have different
dimension then we can conclude that there can’t be a definable bijection between them.

Proposition 3.2.2. [3, p. 64] If X ⊆ Rm and Y ⊆ Rn are definable and there is a
definable bijection between X and Y , then dimX =dimY .

Proof. This proof provides a nice example of using cell decomposition. I will just give
an outline of the proof as given by van den Dries [3, p. 64] and give more detail regarding
the step using cell decomposition as a detailed explanation is not given by van den Dries.

Let dimX = d and dimY = e. We consider a bijection f : X → Y and show that d ≤ e.
e ≤ d then follows from the inverse of f an hence d = e. We take a cell A in X with
dimA = d. Use the map from definition 2.3.3 to transform A into an open cell, p(A).
Then dimp(A) = dim(A) = d. Hence, if dimp(A) ≤ dimf(A) then d ≤ e. In particular,
we may assume that A is an open cell in Rd and that Y = f(A). We take a decomposition
of Rn which partitions Y (using the cell decomposition theorem). Let Y = C1 ∪ ...∪Ck.
Then f−1(Y ) = f−1(C1) ∪ ... ∪ f−1(Ck) = A. Now, here van den Dries just notes that
by the cell decomposition theorem for some 1 ≤ i ≤ k, f−1(Ci) contains an open cell,
B. Why is this the case?

Well, suppose that there is no open cell in f−1(Ci) for any i. As each f−1(Ci) is
definable there is a decomposition of Rd into cells partitioning each f−1(Ci), by the cell
decomposition theorem. Also, each cell in this decomposition contained in some f−1(Ci)

is not open, i.e. each of these cells has empty interior. Now, by note 2.5 of van den Dries
book [3, p. 50], we know that if A is a union of finitely many non-open cells in Rm then
A has empty interior. This is a contradiction as A is open.

Now let Ci be a (j1, ..., jn)-cell. We then consider a map B → Ci → p(Ci) in order to
show that d ≤ j1 + ...+ jn and hence d ≤ e. To see details see [3, pp. 63-64].

3.2.2. Definable Choice & Curve Selection

First we consider some properties of such structures.

Due to the group structure we can definably pick an element e(X) ∈ X from each non-
empty definable set X . By definably, we mean that given a non-empty definable set X we
can give a formula defining {e(X)}.
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This seems trivial, so to get some idea of why it may not be consider a naive way of
constructing e(X). First, let’s say we define e(X) to be the least element of X , well this
may not exist i.e. if X is an interval.

Suppose then we take e(X) as some point greater than the infimum of X , then it may be
the case that e(X) /∈ X for X = {r} ∪ (a, b) with r < a.

The idea then for X ⊆ R is to take e(X) to be the least element if X has one or the
midpoint of the left-most bounded interval if X has one. This is given more formally
below and we also define e(X) inductively for X ⊆ Rm for m ≥ 1.

Definition 3.2.3. [3, p. 93]

(i) LetX ⊆ R be definable and nonempty. IfX has a least element, then let e(X) be this
least element. If X does not have a least element, let (a, b) be its left-most interval:
a = infX , b = sup{x ∈ R : (a, x) ⊆ X}. Then a < b and (a, b) ⊆ X; now set

e(X) :=


0 if a = −∞, b = +∞,

b− 1 if a = −∞, b ∈ R,

a+ 1 if a ∈ R, b = +∞,

(a+ b)/2 if a, b ∈ R.

(ii) Let X ⊆ Rm be definable and nonempty, m > 1, and let π : Rm → Rm−1 be the
projection on the first m − 1 coordinates. Then π(X) ⊆ Rm−1 so we may assume
inductively that an element a = e(π(X)) of π(X) has been defined. Then Xa ⊆ R

and we put e(X) := (a, e(Xa)).

Note that there is typo here in [3] when defining b and we have replaced the R with an X
in ‘sup{x ∈ R : (a, x) ⊆ R}’.

Clearly e(X) ∈ X in case (i). To see that e(X) ∈ X in case (ii), note that a ∈ π(X) and
that e(Xa) ∈ Xa = {x ∈ R : (a, x) ∈ X}.

Proposition 3.2.4 (Definable Choice). [3, p. 94]

(i) If S ⊆ Rm+n is definable and π : Rm+n → Rm the projection on the first m
coordinates, then there is a definable map f : π(S)→ Rn such that Γ(f) ⊆ S.
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(ii) Each definable equivalence relation on a definable set X has a definable set of
representatives.

Note: We think of an equivalence relation on X as a set of ordered pairs of elements of
X , so we can say the equivalence relation is definable if this set is definable in the usual
sense.

What definable choice says is that if for every t ∈ T ⊆ Rm there is at least one
x ∈ X ⊆ Rn such thatR(t, x) holds for some definable relationR then there is a definable
map f : T → X that assigns (i.e chooses) exactly one x ∈ X to each t ∈ T such that
the relation holds. (It may be satisfying - or not! - to note the similarity with the axiom
of choice - that for any set of non-empty sets there is a choice function which chooses an
element from each set).

Van den Dries notes that (i) is the property of having definable Skolem functions - which
allow the removal of existential quantifiers in place of these functions. Another example
of this property comes from Peano Arithmetic, as every nonempty definable set in a model
of Peano Arithmetic has a least member, hence - using the above example - we can pick
the least x such that R(t, x) holds.

Proof. (i) Van den Dries just notes that such a definable map is f(x) = e(Sx) for
x ∈ π(S). Why does this work? Note that Γ(f) = {(x, e(Sx) : x ∈ π(S)} and
e(Sx) ∈ Sx for each x.

(ii) Van den Dries gives the definable set {e(A) : A is an equivalence class} which is
clearly a set of representatives.

We now give the following lemma which tells us that points in the closure of a definable
set X but not in X are limit points of definable paths in X (It is clear that any point in X
is already a limit point of a definable path in X).

Lemma 3.2.5 (Curve Selection). [3, p. 94] If a ∈ cl(X)−X , where X is definable, then
there is a definable continuous injective map γ : (0, ε) → X , for some ε > 0, such that
limt→0γ(t) = a.
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Proof. This is the proof as given by van den Dries, though I will give some more detail.

Suppose a ∈ cl(X), then we can take elements in X as close as we want to a. Hence, the
set {|a − x| : x ∈ X} contains an interval (0, ε′) for arbitrarily small ε′ > 0. Also, note
that this set is definable. For every t ∈ (0, ε′) there is an x ∈ X such that |a− x| = t (*).

We now use definable choice. van den Dries just states that by definable choice
there is a definable function γ : (0, ε′) → X such that |a − γ(t)| = t for all
t ∈ (0, ε′). To see more explicitly why this is the case, consider the definable set
S = {(x, y) ∈ R×X : x ∈ (0, ε′), x = |a− y|}. Let π be the projection on the first m
coordinates, i.e. π(S) = (0, ε′), this comes from (*). Then by definable choice there is a
definable map γ : (0, ε′)→ R such that Γ(γ) ⊆ S. i.e.

Γ(γ) = {(x, γ(x)) : x ∈ (0, ε′)} ⊆ {(x, y) ∈ R×X : x ∈ (0, ε′), x = |a− y|}

⇒ for all x ∈ (0, ε′), x = |a− γ(x)| and γ(x) ∈ X as required.

To finish the proof we note that by the monotonicity theorem we can take
0 = ε1 < ... < εk = ε′ such that γ is continuous on each interval (εi, εi+1). In particular,
γ is continuous on (0, ε2). Let ε2 = ε. Cleary γ is injective on (0, ε). To see this take
x, x′ ∈ (0, ε) with γ(x) = γ(x′). Then x = |a − γ(x)| = |a − γ(x′)| = x′. Also, it is
clear that limt→0γ(t) = a.

Van den Dries gives the following example as an exercise and states that it shows that
definable curve selection fails for the o-minimal structure (R, <). I will give a solution
to this exercise and explain why this shows that curve selection fails as this point is not
immediately clear.

Example 3.2.6. [3, p. 98] Consider the o-minimal model-theoretic structure 〈R, <〉 and
the set

X := {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 2},

which is definable in 〈R, <〉 using the constants 0, 1 and 2. Note that (1, 2) ∈ cl(X)−X
and show that there is no subsets Y ofX such that Y is definable in 〈R, <〉 using constants
dim(Y ) = 1 and (1, 2) ∈ cl(Y ).

Solution Let Y ⊆ X ⊆ R2 be definable in 〈R, <〉 using constants and dim(Y )=1. 〈R, <〉
is o-minimal, so we can take a cell decomposition of R2 which partitions Y . Hence,
Y is a union of finitely many cells, Y = C1 ∪ ... ∪ Ck say. As dim(Y ) = 1, Y
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must not contain a (1, 1)-cell and must contain a (0, 1)-cell or a (1, 0)-cell. Suppose
(1, 2) ∈ cl(Y ) − Y then (1, 2) is a limit point of Y . Hence for all a1, b1, a2, b2 ∈ R if
a1 < 1 < b1 and a2 < 2 < b2 then (a1, b1) × (a2, b2) ∩ Y 6= ∅. Suppose for no Ci,
(1, 2) ∈ cl(Ci)− Ci. Then for every Ci there is some a1, b1, a2, b2 ∈ R with a1 < 1 < b1

and a2 < 2 < b2 such that for all x1, y1, x2, y2 ∈ R if a1 < x1 < 1 < y1 < b1 and
a2 < x2 < 2 < y2 < b2 then (x1, y1) × (x2, y2) ∩ Ci = ∅. Consider such a1, b1, a2, b2

for each Ci and take the largest such a1 and a2 and the least such b1 and b2 (we can do
this as k ∈ N), call them a′1, a

′
2, b
′
1, b
′
2. Then for every Ci and for all x1, y1, x2, y2 ∈ R

if a′1 < x1 < 1 < y1 < b′1 and a′2 < x2 < 2 < y2 < b′2 then (x1, y1)× (x2, y2) ∩ Ci = ∅.
Hence, (x1, y1)× (x2, y2) ∩ Y = ∅ which is a contradiction. Hence, (1, 2) ∈ cl(C) − C
for some cell C in Y .

IfC is a (0, 0)-cell then clearly this does not hold as (1, 2) ∈ cl(C) ⇐⇒ C = {(1, 2)}. If
C is a (0, 1)-cell then C is a vertical line with (1, 2) as a limit point, however no such line
is contained in Y ⊆ X . If C is a (1, 0)-cell then C = {(x, f(x)) : x ∈ (a, b) ⊆ (0, 1)}
for some definable function f and interval (a, b), however the only definable functions in
〈R, <〉 are constant functions or coordinate functions (x1, ..., xm) 7→ xi or combinations
of the two (see [3, p. 24]), for example,

f(x) =

x if x ∈ (a, a′]

2 if x ∈ (a′, b)

Hence if (1, 2) ∈ cl(C) then b = 1 and f must be the constant function f(x) = 2 on some
interval (a′, b) ⊆ (a, b). Hence, C is not contained in X . Hence, no such Y exists. �

Now, how does this example show that definable curve selection fails for (R, <)? Well,
take X as above and note that (1, 2) ∈ cl(X) − X then suppose for a contradiction
that there is a definable continuous injective function γ : (0, ε) → X such that
limt→0γ(t) = (1, 2). Then Γ(γ) = {(x, γ(x)) : x ∈ (0, ε)} is definable. Take π to be the
projection map on the last 2 coordinates. Then Y := π(Γ(γ)) = {γ(x) : x ∈ (0, ε)} ⊆ X

is definable. Further, there is a definable bijection from (0, ε) to Y , namely γ.
dim(0, ε) = 1. Hence, by Proposition 3.2.2, dim(Y ) = 1.

Cleary, (1, 2) ∈ cl(Y ). So we have constructed a subset Y ofX that is definable in (R, <),
where dim(Y ) = 1 and (1, 2) ∈ cl(Y ). This contradicts the above example.

Hence, as noted by van den Dries, the assumption that we are working with an expansion
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of an ordered group is appropriate.

3.2.3. An Application

I will now work towards a nice result given by van den Dries that the image of a closed
bounded definable set under a continuous definable function is closed and bounded.

First it will be necessary to define the notion of bounded used here.

Definition 3.2.7. [3, p. 95] We call a set A ⊆ Rm bounded if for some r ∈ R |a| < r for
all a ∈ A.

This is saying that a set A is bounded if A is bounded (in the usual sense) in each
coordinate.

The following lemma tells us that the closure of a bounded cell under the projection map
is equal to the closure of the projection of the cell. This result is then used to prove the
main result of this section, also I will include the proof as it makes use of the monotonicity
theorem and curve selection.

Lemma 3.2.8. [3, p. 95] Let C be a bounded cell in Rm, m > 1, and π : Rm → Rm−1

the projection on the first m− 1 co-ordinates. Then π(cl(C)) = cl(π(C)).

Proof. There are two cases to consider, either C = (f, g)π(C) or C = Γ(f) for some
appropriate functions f and g. Van den Dries leaves the case C = Γ(f) to the reader so I
will do this case. Let f ∈ C(π(C)).

Firstly, note that π is a continuous function. (To see this: Let V ⊆ Rm−1 be an open set
then the preimage π−1(V ) = {x ∈ Rm : π(x) ∈ V } = V × R is open in Rm). Then as a
basic fact from topology, π(cl(C)) ⊆ cl(π(C)).

Let a ∈ cl(π(C)). Need to find s ∈ R such that (a, s) ∈ cl(C). If a ∈ π(C) then there is
s such that (a, s) ∈ C ⊆ cl(C) so we are done.

Suppose that a /∈ π(C). Then by curve selection there is a continuous definable function
γ : (0, ε)→ π(C) such that limt→0γ(t) = a.

As C is bounded there is an r ∈ R with r > 0 such that −r < f(x) < r for all x ∈ π(C).
Define λ : (0, ε)→ R by λ(t) = f(γ(t)). Then as f is bounded by r, −r < λ(t) < r for
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all t ∈ (0, ε). By applying the monotonicity theorem to λ we know there is 0 < σ < ε

such that λ is either constant or strictly monotone (and continuous) on (0, σ).

Clearly if λ is constant on (0, σ), say λ(t) = s, then taking U = (−σ, σ) we see
that λ(U ∩ (0, ε)− {0}) = {s} ⊆ V where V is any open neighbourhood of s. Hence
limt→0λ(t) exists. Also, if λ is strictly monotone on (0, σ) then consider the image
λ((0, σ)). This is a definable subset of R. Hence by Lemma 1.4.5 (i), λ((0, σ)) has
an infinum and supremum in R∞. Further λ((0, σ)) is bounded by r, hence its infimum
and supremum exist in R. Consider the case where λ is strictly increasing on (0, σ).
Then infλ((0, σ)) = s is the required limit point as t → 0. To see this, take an open
neighbourhood V of s. Then U = λ−1(V )∪ (−σ, σ) is an open neighbourhood of 0 (as λ
is continuous) and gives λ(U ∩ (0, ε)− {0}) = λ(λ−1(V ) ∩ (0, ε)− {0}) ⊆ V .

Hence the function g : (0, ε)→ C, t 7→ (γ(t), λ(t)) is a continuous definable function and
limt→0g(t) = (a, s). Hence (a, s) ∈ cl(C) ⇒ a ∈ π(cl(C)) ⇒ cl(π(C)) ⊆ π(cl(C)).

Remark 3.2.9. This result easily extends to the projection map Rm → Rm−n on the first
m − n coordinates. To see this note that π(cl(C)) = cl(π(C)) ⇒ π ◦ π(cl(C)) =

πcl(π(C)) = cl(π ◦ π(C)).

The proof that the image of a closed bounded set is bounded is short and again uses the
monotonicity theorem as in the above proof to establish the existence of limits. Hence I
will just state this as a lemma and not give a proof.

Lemma 3.2.10. [3, p. 95] Let f : X → Rn be a definable continuous map on a closed
bounded set X ⊆ Rm. Then f(X) is bounded in Rn.

Proof. Omitted.

Lemma 3.2.11. [3, p. 96] If f : X → Rn is a continuous definable function on a closed
bounded set X ⊆ Rm, then f(X) is closed and bounded in Rn.

Proof. The proof given by van den Dries is already very clear and concise but also shows
why 3.2.8 is useful, so I will give a brief description of it.

Take Y to be the reversed graph of f i.e. Y := {(f(x), x) : x ∈ X} ⊆ Rn+m. Then take a
cell decomposition ofRm+n which partitions Y . Let Y = C1∪ ...∪Ck for cells C1, ..., Ck.
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Note that Y is closed, hence Y = cl(Y ) = cl(C1 ∪ ... ∪ Ck) = cl(C1) ∪ ... ∪ cl(Ck) as
the closure of a finite union is equal to the union of the closures of each set. Y is bounded
as X and f(X) are bounded, hence each cell is bounded. We can now apply 3.2.8, to see
that π(Y ) = π(cl(C1)) ∪ ... ∪ π(cl(C1)) = cl(π(C1)) ∪ ... ∪ cl(π(C1)) = f(X). Hence
f(X) is closed in Rn.

This result can in fact be generalized to arbitrary o-minimal structures, this was done by
Steinhorn and Peterzil - see corollary 2.4 of [8]. In this paper they also establish the result
that a definable set, X , is closed and bounded if and only if it is definably compact i.e. if
every definable continuous map from an interval ontoX has both right-hand and left-hand
limit points in X [8, p. 770].

The following proposition is an exercise given by van den Dries and gives us a fixed point
theorem for functions on closed bounded definable sets.

Proposition 3.2.12 (Fixed Point Theorem). [3, p. 97] Let X ⊆ Rm be a nonempty
closed bounded definable subset of Rm and f : X → X a definable map such that
|f(x)− f(y)| < |x− y| for all distinct points x, y ∈ X . Then f has a unique fixed point.

Proof. First I will note that van den Dries gives a hint to the solution: Consider points in
X where the function x 7→ |f(x)− x| : X → R takes its minimum value [3, p. 170].

Consider the map g : X → R defined by g(x) = |f(x)− x|. Then clearly g is a definable
function. Further, as f is continuous then so is g. Hence by 3.2.11 g(X) is closed and
bounded. As g(X) is a subset of R this means that g(X) = [a, b] for some a, b ∈ R. Let
x ∈ X be such that a = g(x) = |f(x) − x|. Suppose for a contradiction that f(x) 6= x.
Then |f(f(x))−f(x)| < |f(x)−x| = a which contradicts the minimality of a (as indeed
f(x) ∈ X so |f(f(x))− f(x)| ∈ g(X)). Hence x = f(x) is a fixed point.

To see that this point is unique suppose that x, y ∈ X are distinct and f(x) = x, f(y) = y.
Then |x− y| = |f(x)− f(y)| < |x− y|. Contradiction.

46



4. Exponentiation

4.1. Introduction

A significant development in this field was a result was given by Wilkie [5], saying
that the theory of the structure of the real ordered field with exponentiation is model
complete - this is similar to quantifier elimination. This result combined with a result
due to Khovanskii [9] showed that o-minimal expansions of the real ordered field with
exponentiation are o-minimal.

The methods used in proving this are rather complex so I will not consider these.
However, I will look at two nice results due to Miller regarding the definability of the
exponential function in o-minimal expansions of ordered fields, the growth dichotomys.
The first result tells us that for any o-minimal expansion, R, of the ordered field of real
numbers, if R is not polynomially bounded then the exponential function is definable
in R. The second result gives a more general result applied to arbitrary o-minimal
expansions of ordered fields; in this case however we must use the notion of power
boundedness which differs slightly from the notion of being polynomially bounded.

Note that Miller also proved a growth dichotomy for o-minimal expansions of ordered
groups, saying that for R an o-minimal expansion of an ordered group, (R,<,+), either
R is linearly bounded or there is a definable operation · such that (R,<,+, ·) is an ordered
real closed field [10].

I will only briefly discuss the case for the field of real numbers and give more attention
to the more general case. In the general case I will outline the necessary background
for the proof of the main theorem of the section and will give an outline of the proof of
this. I hope that this can serve as an aid to understanding Miller’s paper, giving a concise
overview and in places giving more explanation. To see the proof of the theorem in full
detail see [4].
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In the general case, it will be necessary to properly define what we mean when we speak
of the exponential function. We will see that the formal definition satisfies the notion of
an exponential function.

4.2. Expansions of the ordered field of real numbers

4.2.1. Preliminaries

Note: By ‘ultimately’ we will mean ‘for all sufficiently large x’.

In this section we fix an o-minimal expansion, R = 〈R, <, 0, 1,+, ·, ...〉, of the ordered
field of real numbers.

We also need to define a notion of polynomially bounded.

Definition 4.2.1. [11, p. 257] We say that a structure R is polynomially bounded if, for
every definable function f , there exists N ∈ N such that ultimately |f(x)| ≤ xN .

So, if R is polynomially bounded then for every definable function, f , there is some xN

which ‘grows faster’ then f .

4.2.2. Definability of the Exponential Function

Theorem 4.2.2. [11, p. 257] Let R be o-minimal and not polynomially bounded. Then
the exponential function is definable.

Proof. Outline Using the monotonicity theorem, for every definable function there is
some ‘rightmost’ interval on which the function is either constant or strictly monotone
and continuous. Further, given a result from van den Dries in [12] each definable function
is also differentiable on this interval. These results imply that every definable function
has a limit at infinity (as the germs at +∞ of the definable functions form a Hardy field).

Now, by looking at the limits of definable functions at infinity it is established that there
is a function g such that near infinity g′ acts like 1/x. This then implies that the log
function is definable. From which it can be easily shown that the exponential function is
also definable.
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4.3. General Case of ordered fields

4.3.1. Preliminaries

In this section we let R be an arbitrary expansion of an ordered field,
R = 〈R,<,+,−, ·, 0, 1, ...〉.

As R is an ordered field which contains 0, we can consider all the elements of R which
are greater than 0 with respect to this ordering. We call these the positive elements of R
and denote this set by Pos(R). We also let R∗ denote the nonzero elements of R.

Also, due to the field structure, we can think of (Pos(R), ·, 1) as a group with · as
the group operation and identity element 1. Below, we will use the notions of group
homomorphisms. I will not give the formal definition of these. They can be thought of as
maps between groups which preserve the group structure. The following is a result from
Pillay and Steinhorn [1, p. 569] which will also be necessary.

Lemma 4.3.1. Let G = (G,+, 0, <) be an o-minimal ordered group. Then G has no
proper nontrivial definable subgroups.

Proof. Omitted. As an outline, we consider a nontrivial definable subgroup, H . As there
is a non-zero element contained in H then H must be infinite as o-minimal groups are
torsion free, see [3, p. 19]. Hence, by o-minimality H contains an interval. Suppose that
H is not equal to G then H contains an interval which is bounded above and below. We
suppose that this interval is symmetric about 0 and is the largest such, and from this a
contradiction is drawn. See [1, p. 569].

4.3.2. Power Boundedness

Definition 4.3.2. [4, p. 386] A power function (ofR) is a definable endomorphism of the
multiplicative group (Pos(R), ·, 1).

Hence, a power function is a map f : Pos(R) → Pos(R) where for any x, y ∈ Pos(R),
f(x · y) = f(x) · f(y). It can clearly be seen that this holds for the canonical example of
the function f(x) = xr in the field of real numbers. Also note that for a power function,
f , f ′(x) = f ′(1) · f(x)/x.
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We now consider the set of all power functions, denoted to be K. Miller shows in his
paper that this can be regarded as on ordered field where multiplication is composition,
f ◦g, addition is pointwise multiplication, (f +g)(x) = f(x) ·g(x) and f < g if and only
if f ′(1) < g′(1) - this works as, importantly, if f ′(1) = g′(1) then f = g [4, p. 386].

Define a map K → R by f 7→ f ′(1). We call the image of this map the field of exponents
of R and denote it by K [4, p. 386]. (Consider again f(x) = xr in the field of real
numbers; then f ′(1) = k i.e. the exponent of x in f(x)).

Notation: Let f ∈ K and f ′(1) = r ∈ K. Then we write xr to denote f and similarly
ar to denote f(a). Also this notation preserves the usual differentiation for polynomials -
(xr)′ = r · xr−1. To see this let xr denote f , then f ′(x) = f ′(1) · f(x)/x = r · f(x)/x.
Let g(x) = f(x)/x then

g′(x) =
f ′(x) · x− f(x)

x2
.

Hence, g′(1) = r − 1 i.e. we denote g by xr−1. Hence f ′(x) = r · xr−1.

Definition 4.3.3. [4, p. 387] The structure R is said to be power bounded if for every
definable unary function f there exists r ∈ K such that ultimately |f(x)| ≤ xr.

4.3.3. Exponential Functions

Definition 4.3.4. [4, p. 389] An exponential function for the ordered fieldR is an ordered
group isomorphism

E : (R,<,+, 0)→ (Pos(R), <, ·, 1).

We say that the structure R is exponential if there exists a exponential function for R
definable inR.

Miller notes that it is an easy exercise to show that if E is differentiable at some point of
R then it is differentiable on R and E ′(x) = E ′(0)E(x). I will show this below.

Let E be differentiable at c ∈ R. Then

E ′(c) = limh→0
E(c+ h)− E(c)

h
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exists. As E is an isomorphism,

E ′(c) = limh→0
E(c) · E(h)− E(c)

h
= limh→0E(c) · E(h)− 1

h

Again as E is an isomorphism E(0) = 1. Hence,

E ′(c) = limh→0E(c) · E(h+ 0)− E(0)

h
= E(c) · E ′(0)

This shows that E ′(0) exists. Now consider an arbitrary r ∈ R. Then

E ′(r) = limh→0
E(r + h)− E(r)

h
= E(r) · E ′(0)

as above. Hence E is differentiable on R.

It is given that all unary functions definable inR are ultimately differentiable [4, p. 386].
From this it follows that if an exponential function is definable inR then it is differentiable
on R. It is also shown by Miller that if some exponential function is definable then there
is a definable exponential function E such that E ′ = E and that this is a unique definable
function [4, p. 389]. This unique E is sometimes denoted by ex or exp(x). Also note that
any exponential function E is nonconstant as E is an isomorphism.

The following proposition will be useful later. This is given by Miller as a note, he also
mentions that the proof is similar to Proposition 2.3 of his paper (Please note there are
two versions of this paper which have slightly different numbering, I am using the version
given in the bibliogrpahy).

Proposition 4.3.5. [4, p. 390] If there exists a definable nonconstant function
L : Pos(R) → R such that L(xy) = L(x) + L(y) for all x, y ∈ Pos(R) then R is
exponential.

Proof. First note that the kernel of L, ker(L), is nonempty as
L(1 · 1) = L(1) = L(1) + L(1) ⇒ L(1) = 0. Hence, ker(L) is a definable subgroup
of (Pos(R), ·, 1). By Lemma 4.3.1, (Pos(R), ·, 1) has no proper, nontrivial definable
subgroups. Hence ker(L) is either {1} or R. Hence ker(L) = {1} as L is nonconstant.
Then via a standard group theoretic result, L is injective. In a similar way it can be shown
that L is surjective. Hence L is a bijection.
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Consider the bijection L−1 : R → Pos(R). Let x, y ∈ R. Then for some a, b ∈ Pos(R)

such that L(a) = x and L(b) = y, L−1(x + y) = L−1(L(a) + L(b)) = L−1(L(ab)) =

a · b = L−1(x) · L−1(y).

Similarly to the above argument with E, it can be easily shown that L−1 is differentiable
on R and that (L−1)′(x) = (L−1)′(0) · L−1(x). Now, L−1 is nonconstant ⇒
(L−1)′(0) 6= 0 ⇒ L−1 is strictly monotone, however considering the definable function
x 7→ L−1(x/(L−1)′(0)) we may assume that (L−1)′(0) = 1 and hence L−1 is strictly
increasing. Hence, for all x, y ∈ R, x < y ⇐⇒ L−1(x) < L−1(y).

Hence L−1 is an ordered group isomorphism and thus an exponential function for R.
HenceR is exponential.

The main theorem of this chapter is that R is either exponential or power bounded.
However, without introducing any more complex ideas it is possible to show that this
‘or’ must be exclusive. This is the result of the following proposition.

Proposition 4.3.6. [4, p. 390] IfR is exponential, thenR is not power bounded.

Proof. This proof is given by Miller but I will add some more detail. First we show that
for all r ∈ R, limx→+∞(ex/xr) = +∞.

Consider

(
ex

xr
)′ =

ex · xr − r · xr−1 · ex

x2r
= ex · x−r − r · x−r−1 · ex = ex · x−r(1− r · x−1).

For r ≤ 0 this is clearly positive for positive x. If r > 0 then this is positive
for x > r. Hence ex/xr is strictly increasing. Suppose that ex/xr is bounded, i.e.
limx→+∞e

x/xr = c for some c ∈ Pos(R). Then

c = limx→+∞
ex+1

(x+ 1)r
= limx→+∞

e1 · ex

xr · (1 + x−1)r
= e1 · c.

Hence e1 = 1. However, e0 = 1 and e is strictly increasing so this is a
contradiction. Hence, ex/xr is strictly increasing and not bounded for any r ∈ R. So,
limx→+∞e

x/xr = +∞ for all r ∈ R. HenceR is not power bounded.
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4.3.4. The Growth Dichotomy

I will give an outline of the proof of the growth dichotomy. It will first be necessary to
define the functions Pf and v and give some properties.

Definition 4.3.7. [4, p. 388] Let f be a definable unary function which is ultimately
nonzero. Then the definable set

{t ∈ Pos(R) : limx→+∞(f(tx)/f(x)) ∈ Pos(R)}

is a subgroup of (Pos(R), ·, 1) and so, by Lemma 4.3.1, is either {1} or Pos(R). If this
subgroup is Pos(R) then we define Pf : Pos(R)→ Pos(R) by

Pf (t) := limx→+∞(f(tx)/f(x)).

Importantly, note that for all s, t ∈ Pos(R), Pf (st) = Pf (s) · Pf (t). Hence, Pf is
an endomorphism of (Pos(R), ·, 1) and so is a power function, xr for some r ∈ R.
Clearly, if f is a power function xr then Pf = f . Hence, PPf

= Pf = f , moreover,
P (Pf/f) = P (f/f) = 1 (Note that we write 1 here to mean the constant function taking
elements from Pos(R) to 1 ∈ Pos(R)).

Now, for the sake of brevity I will not go into much detail regarding the idea of germs. The
germ of a function, f , at +∞ is an equivalence class of f such that f ∼ g ⇐⇒ f and g
are ultimately the same. Let H denote the set of all germs of definable unary functions
and H∗ be the nonzero elements of H . We also write f to mean the germ of f . We
will write x to denote the identity function (it should be clear from the context when it is
meant as a function or a variable), 1/f to denote the multiplicative inverse of f and f−1

to denote the compositional inverse of f .

We now define a valuation v on H∗ which has the property that for any f ∈ H∗

v(f) = 0 if limx→+∞f(x) ∈ R∗, v(f) > 0 if limx→+∞f(x) = 0 and
v(f) < 0 if limx→+∞|f(x)| = +∞. Also, for any f, g ∈ H∗ if v(f) = v(g) then
limx→+∞(f(x)/g(x)) = c for some c ∈ R∗, if c = 1 then we write f ∼ g. We also
use + to denote the group operation in v(H∗) and − to denote the group inverse in v(H∗)

hence, v(fg) = v(f) + v(g) and v(f)− v(g) = v(f/g).

We say that f ∈ H∗ is infinitely increasing if limx→+∞f(x) = +∞.

53



Chapter 4. Exponentiation

Theorem 4.3.8. [4, p. 393] EitherR is exponential orR is power bounded.

Proof. Outline We split into two cases.

Case 1 There exists f ∈ H∗ with v(f) 6= 0 and v(f ′/f) 6= v(1/x).

First, we may suppose that f is infinitely increasing. (As if not, then exactly one of
1/f , −f or −1/f is infinitely increasing [4, p. 391], call this g. Also, |v(f)| = |v(g)|
[4, p. 391], hence v(g) 6= 0 and then v(f ′/f) = v(g′/g) by Proposition 3.3 of Miller’s
paper [4, p. 392]. Hence v(g′/g) 6= v(1/x) so we may continue the proof with g in place
of f , with g infinitely increasing). Now, for large enough x, f has an inverse, denoted f−1

(As, due to o-minimality f must be strictly increasing on some interval (a,+∞)).

We may assume v(f ′/f) < v(1/x), replacing f with f−1 if not. To see why this is the
case suppose that v(f ′/f) > v(1/x). Then

v(f ′/f)− v(1/x) = v(f ′/f) + v(x) = v(xf ′/f) > 0

⇒ limx→+∞xf
′(x)/f(x) = 0.

Similary if limx→+∞f
−1(x)/xf−1′(x) = 0 then v(f−1′/f−1) < v(1/x) as required. To

see this note that
limx→+∞f

−1(x)/xf−1′(x)

= limx→+∞f
′(f−1(x))f−1(x)/x

= limx→+∞f
′(f−1(f(x)))f−1(f(x))/f(x) (as f is infinitely increasing)

= limx→+∞xf
′(x)/f(x) = 0.

Now, from Proposition 3.4 of Miller’s paper [4, p. 392], there is some h ∈ H∗ with
h′ ∼ f ′/f . For some intuition about why such a h′ is important notice that this is saying
that h′ is equivalent to the derivative of ‘log’f(x), I put apostrophes around the log here to
emphazise that we don’t actually yet have a formally defined notion of the log function in
this structure and this is just mentioned to provide some intuition. Then (h ◦ f−1)′ ∼ 1/x

i.e. the derivative of h ◦ f−1 is in some sense equivalent to the derivative of ‘log’x.

To see that (h ◦ f−1)′ ∼ 1/x we must show that limx→+∞x(h ◦ f−1)′(x) = 1. Note that
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(h ◦ f−1)′ = h′ ◦ f−1 · f−1′ = h′ ◦ f−1/f ′ ◦ f−1. Hence

limx→+∞x(h ◦ f−1)′(x)

= limx→+∞x · h′(f−1(x))/f ′(f−1(x))

= limx→+∞xf
′(f−1(x))/f(f−1(x)) · f ′(f−1(x)) (as h′ ∼ f ′/f )

= 1.

Let g : h ◦ f−1, so g′ ∼ 1/x.

Now, as the mean value theorem holds for definable functions [4, p. 386], we can apply
this to g(x). Let t ∈ Pos(R)− {1}. For t > 1, we get

g′(c) =
g(xt)− g(x)

xt− x

for some c with x < c < xt. Combined with the fact that g′ ∼ 1/x, we get that ultimately
g(xt)−g(x) is positive and bounded above and below inR, see [11, p. 258] for details. As
g is definable, g(xt)− g(x) is clearly definable and hence has a limit in R ∪ {−∞,+∞}
[11, p. 386], hence has a limit in R∗. For t ∈ (0, 1), we apply the mean value theorem
similary to g(x/t)− g(x) to see that

limx→+∞g(x/t)− g(x) = −limx→+∞g(xt)− g(x) ∈ R∗.

Hence, the function G : Pos(R)→ R defined by

G(t) := limx→+∞(g(tx)− g(x))

is well-defined and is clearly a definable function with G(t) 6= 0 for all t 6= 1.

G(1) = 0 so G is nonconstant. Also, G(st) = G(s) +G(t) for all s, t ∈ Pos(R). (To see
this: Let ε > 0 then there is δ1, δ2 > 0 such that

x > δ1 ⇒ g(tx)− g(x)−G(t) < ε/2

and
x > δ2 ⇒ g(sx)− g(x)−G(s) < ε/2.
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Let δ = max{δ1/2, δ2} and let x > δ, then s · x > δ1 so g(stx)− g(sx)−G(t) < ε/2 (1)

and x > δ2 so g(sx)− g(x)−G(s) < ε/2⇒ −g(x)−G(s)− ε/2 < −g(sx) (2).
Substituting (2) into (1) gives

g(stx)− g(x)−G(s)− ε/2−G(t) < ε/2⇒ g(stx)− g(x)−G(s)−G(t) < ε).

Hence by Proposition 4.3.5,R is exponential.

Case 2 For all f ∈ H∗, if v(f ′/f) 6= v(1/x) then v(f) = 0. It is first shown that for all
f ∈ H∗, Pf exists.

If v(f) = 0 then limx→+∞f(x) ∈ R∗ ⇒ limx→+∞f(tx)/f(x) = 1 for all t ∈ Pos(R),
hence Pf is the constant function 1.

For the case that v(f) 6= 0 we consider the map g(x) = f(2x)/f(x). If we show that
v(g) = 0 then P2 is defined and hence Pf is defined for all t ∈ Pos(R) (from Lemma 4.3.1
and the definition of Pf ). From the assumption of this case, if we show that v(g′/g) 6=
v(1/x) then v(g) = 0. Now, v(f) 6= 0, hence by case assumption v(xf ′/f) = 0 i.e.
limx→+∞xf

′(x)/f(x) ∈ R∗. Hence

limx→+∞xf
′(x)/f(x) = limx→+∞2xf ′(2x)/f(2x) ∈ R∗

and
xg′(x)/g(x) = 2xf ′(2x)/f(2x)− xf ′(x)/f(x),

so limx→+∞xg
′(x)/g(x) = 0 i.e. v(g′/g) 6= v(1/x).

Hence for all f ∈ H∗, Pf = xr for some r ∈ K. We now show that v(f) = v(Pf ).

Consider the case where Pf 6= 1. Well, as seen above P (Pf/f) = 1 and if we show that
v(Pf/f) = 0 then v(f) = v(Pf ). So we may assume that Pf = 1 and show that v(f) = 0

i.e. v(f) = v(Pf ). This is done again by using the mean value theorem. We get that

f ′(c) =
f(2x)− f(x)

2x− x

for some c with x < c < 2x, using this Miller shows that v(f ′/f) 6= v(1/x) and hence
by the case assumption v(f) = 0, to see full details see [4, p. 394].

This concludes the proof since v(f) = v(Pf )⇒ limx→+∞f(x)/xr = c for some c ∈ R∗,
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hence for all suffciently large x, |f(x)| ≤ xr+1. HenceR is power bounded.
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5. Brief Discussion of Applications

5.1. Introduction

O-minimality has many applications across various areas of mathematics. This chapter is
intended to give a brief look at a few such applications, providing a list which is by no
means exhaustive. The nature of these applications is that they are rather complex, so due
to restriction on time I am not able to go into much detail. The intention is really just to
show that o-minimality is very applicable outside of model theory.

5.2. Vapnik-Chervonenkis Dimension

I will first give the formal definition of Vapnik-Chervonenkis Dimension taken from
[13, p. 327]. Let D be a given set. For every X ⊆ D we define a dichotomy on X

as a function c : X → {0, 1}. We then say that a function f : D → R implements the
dichotomy c if and only if c(x) > 0 ⇐⇒ f(x) > 0. Let F be any class of functions. We
say that a subset X ⊆ D is shattered by F if each dichotomy on X can be implemented
by some f ∈ F . The Vapnik-Chervonenkis (VC) dimension of F , V C(F ), is then defined
to be the (possibly infinite) supremum of the set of integers k where there is some subset
X ⊆ D of cardinality k that can be shattered by F .

To get a more intuitive understanding of the notions defined above we will consider an
example from neural networks.

Consider a set of data points on a 2-D plane, this is our subset X , then F shatters X
if however we label the data points (using 0 and 1) there is some function in F which
draws a dividing line and separates all 1 points from 0 points. V C(F ) is then the largest
cardinality of a subset X such that this is the case. The VC dimension is a measure of the
complexity of a neural network and indicates the network’s ability to do genuine learning.
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(In the example of a neural network, D is the set of all inputs, X is the training set, c is in
some sense the supervised learning process and a function f implements c if it gives the
same answers as c on the training set X).

How is this related to o-minimality? Well, consider a structure A = 〈R, ...〉 in a language
L and some L-formula, θ(w1, ..., wr, x1, ..., xm). We then define a class of functions
F = {θw̄ : w̄ ∈ Rr} mapping Rm → {0, 1} by θw̄(x1, ..., xm) = 1 ⇐⇒ θ(w̄, x1, ..., xm)

holds in A.

It was shown that if A is o-minimal then V C(F ) <∞ [14, p. 383]. (1)

Further, formulas in appropriate languages can be used to describe certain neural
networks. Hence, we can deduce that the VC dimension of such neural networks is finite.

Also, the property in (1) is also known as the dependence property or the non-
independence property, NIP, which has several applications in model theory and has
become a more active area of research over the past couple of decades, see [15].

5.3. Number Theory

In [16], Pila and Wilkie consider the density of rational points in given subsets of Rn.
A rational point in Rn is simply a point with rational coordinates. As discussed in this
paper, results had already been given saying that on certain sets there is in some sense
only few rational points. However, Pila and Wilkie extend this by looking at arbitrary
definable sets in o-minimal structures. Giving the result that there are ‘few’ rational points
in any definable set. Clearly in most definable subsets of Rn there is an infinite number
of rational points, hence we restrict attention to rational points where the numerator and
denominator are bounded and we also remove the algebraic part of the subset. This result
has had several consequences in number theory.

5.4. Algebraic Geometry

Let R be the ordered field of real numbers. Then the sets definable in R using
constants are exactly the semialgebraic sets, defined in 1.4.7. One direction of this was
shown in 1.3.9. The other direction results from the Tarksi-Seidenberg Theorem which
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essentially gives quantifier elimination forR. This then shows thatR is o-minimal as the
semialgebraic sets on the real line are all the finite unions of intervals and points [3, p. 37].

The semialgebraic sets are the main focus of study in algebraic geometry, hence
conclusions drawn about definable sets in o-minimal structures are of considerable
interest.
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A. Aside on Topology

Definition A.1. [17, p. 28] Given a set, X , a collection τ of subsets of X is a topology
for X if it has the following properties:

(i) ∅ ∈ τ , X ∈ τ

(ii) if U1,U2 ∈ τ , then U1 ∩ U2 ∈ τ

(iii) if Uλ ∈ τ for all λ ∈ ∆ for some indexing set ∆, then
⋃
λ∈∆ Uλ ∈ τ

We call (X, τ) a topological space and the subsets of τ are called the open sets of X .

Definition A.2. [17, p. 29] Given a topological space, (X, τ), and a subset A ∈ X , we
say that A is closed if its complement is open.

Definition A.3. [18, p. 60] If X is a topological space and p is a point in X , a
neighbourhood of p is a subset V of X that includes an open set U containing p,
p ∈ U ⊆ V .

Definition A.4. [18, p. 61] Let S be a subset of a topological space X . A point p in X
is a limit point of S if every neighbourhood of p contains at least one point of S which is
not p itself.

Definition A.5. [18, p. 61] The closure of a set S is the set S together with all of its limit
points.

Definition A.6. [18, p. 63] Given a topological space, (X, τ), and a subset A ∈ X , we
say that A is dense in A if the only closed subset of X containing A is X .
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Remark A.7. The following result will be useful to note. Given a topological space,
(X, τ), and a subset A ∈ X , if A is dense in X then for any open subset C ⊆ X ,
C ∩ A 6= ∅. Here is a short proof. Suppose C ∩ A = ∅. Then A ⊆ X − C, which is a
proper closed subset of X . Contradiction.

Definition A.8. [17, p. 32] A function f : X → Y between two topological spaces X
and Y is continuous if for every open set, V , of Y . the inverse image of V , f−1(V ), is
open in X .

Definition A.9. [17, p. 39] A topological spaceX is Hausdorff if for each distinct pair of
points x, y ∈ X there exists open sets U, V in X such that x ∈ U , y ∈ V and U ∩ V = ∅.

Remark A.10. [3, p. 95] The following result will be useful to note. Given a continuous
map f : X → Y from a topological space X to a hausdorff space Y , the graph Γ(f) is a
closed subset of X × Y .

Definition A.11. [18] Suppose X ,Y are topological spaces with Y a hausdorff space.
Let p be a limit point of S ⊆ X and L ∈ Y . For a function f : S → Y , it is said that the
limit of f as x approaches p is L and write limx→pf(x) = L if the following holds:

For every open neighbourhood V of L, there exists an open neighbourhood U of p such
that f(U ∩ S − {p}) ⊆ V .
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